CAREER: Analysis of Surface Water Waves
职业:地表水波分析
基本信息
- 批准号:1352597
- 负责人:
- 金额:$ 41.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will develop new technical tools in partial differential equations and other branches of mathematics, and she will extend and combine existing tools, in order to tackle several long-standing open problems in theoretical aspects of water waves. They include (1) the global regularity versus finite-time blowup for the initial value problem, (2) the existence of traveling waves and their classification, (3) the stability and instability of traveling waves. Emphasis is placed upon the large scale dynamics and genuinely nonlinear behaviors, an acute understanding of which ultimately hinges upon analytical proofs. Emphasis is placed upon the use of the Euler equations in hydrodynamics rather than simple approximate models such as the Korteweg-de Vries equation. The PI proposes to foster applied mathematics at her host institution. She will continue organizing seminars and conferences, and she will disseminate her research through conference presentations, seminars and colloquia. The PI proposes to enhance the undergraduate ODE curriculum and develop new graduate courses. She plans to involve undergraduate and graduate students in her research and mentor graduate students and postdoctoral researchers. The PI will encourage women and minorities to pursue careers in mathematics, science and engineering, and improve the pipeline for women research mathematicians.The problem of water waves concerns the wave motion at the interface separating in two or three dimensions an incompressible inviscid fluid below a body of air, acted upon by gravity and possibly surface tension. Describing in an idealized fashion what may be observed in an ocean or a lake, water waves are a perfect specimen of applied mathematics. They host a wealth of wave phenomena, ranging in length scale from ripples driven by surface tension to tsunamis and to rogue waves. They provide source and inspiration to several branches of mathematics. Furthermore they impact outside of mathematics, from hydraulics to weather prediction. The water wave problem, notwithstanding, presents profound and subtle difficulties for rigorous analysis, modeling and numerical simulations. For one thing, the interface between the water and the air is a priori unknown and to be determined as part of the solution, namely a free boundary. Incidentally, free boundaries are mathematically challenging in their own right and they occur in numerous situations such as the melting of ice and the stretching of a flexible membrane over an obstacle. To make things worse, boundary conditions at the free surface are severely nonlinear. This project will develop new tools to advance understanding of these challenging problems.
PI将在偏微分方程和其他数学分支中开发新的技术工具,她将扩展和联合收割机现有的工具,以解决水波理论方面的几个长期存在的开放问题。其中包括(1)初值问题的全局正则性与有限时间爆破,(2)行波的存在性及其分类,(3)行波的稳定性与不稳定性。重点放在大尺度动力学和真正的非线性行为,一个敏锐的理解,最终取决于分析证明。重点放在使用欧拉方程在流体力学,而不是简单的近似模型,如Korteweg-de弗里斯方程。PI建议在她的主办机构促进应用数学。她将继续组织研讨会和会议,并将通过会议演讲、研讨会和座谈会传播她的研究成果。PI建议加强本科ODE课程和开发新的研究生课程。她计划让本科生和研究生参与她的研究,并指导研究生和博士后研究人员。PI将鼓励女性和少数民族追求数学、科学和工程方面的职业,并改善女性研究数学家的管道。水波问题涉及在二维或三维空间中分离空气下方不可压缩无粘流体的界面处的波动,受到重力和可能的表面张力的作用。水波以理想化的方式描述了在海洋或湖泊中可以观察到的东西,是应用数学的完美样本。它们拥有丰富的波浪现象,从表面张力驱动的涟漪到海啸和流氓波的长度尺度不等。它们为数学的几个分支提供了源泉和灵感。此外,它们还影响数学之外的领域,从水力学到天气预测。水波问题,尽管如此,提出了深刻的和微妙的困难,严格的分析,建模和数值模拟。首先,水和空气之间的界面是先验未知的,并且被确定为解的一部分,即自由边界。顺便说一句,自由边界本身在数学上是具有挑战性的,它们发生在许多情况下,例如冰的融化和柔性膜在障碍物上的拉伸。更糟糕的是,自由表面的边界条件是严重的非线性。 该项目将开发新的工具,以促进对这些具有挑战性的问题的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vera Mikyoung Hur其他文献
Asymptotic stability of sharp fronts: Analysis and rigorous computation
尖锐前沿的渐近稳定性:分析与严格计算
- DOI:
10.1016/j.jde.2025.113550 - 发表时间:
2025-11-05 - 期刊:
- 影响因子:2.300
- 作者:
Blake Barker;Jared C. Bronski;Vera Mikyoung Hur;Zhao Yang - 通讯作者:
Zhao Yang
Unstable Surface Waves in Running Water
- DOI:
10.1007/s00220-008-0505-6 - 发表时间:
2008-05-15 - 期刊:
- 影响因子:2.600
- 作者:
Vera Mikyoung Hur;Zhiwu Lin - 通讯作者:
Zhiwu Lin
Erratum to: Unstable Surface Waves in Running Water
- DOI:
10.1007/s00220-013-1660-y - 发表时间:
2013-02-06 - 期刊:
- 影响因子:2.600
- 作者:
Vera Mikyoung Hur;Zhiwu Lin - 通讯作者:
Zhiwu Lin
Vera Mikyoung Hur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vera Mikyoung Hur', 18)}}的其他基金
Midwest Women in Mathematics Symposium
中西部女性数学研讨会
- 批准号:
1565670 - 财政年份:2016
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
Mathematical aspects of surface water waves
表面水波的数学方面
- 批准号:
1008885 - 财政年份:2010
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
Problems in the Mathematical Theory of Water Waves
水波数学理论问题
- 批准号:
1002854 - 财政年份:2009
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
Problems in the Mathematical Theory of Water Waves
水波数学理论问题
- 批准号:
0707647 - 财政年份:2007
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Design and Analysis of Holographic Optical Reconfigurable Intelligent Surface for Free-Space Optical Communications
自由空间光通信全息光学可重构智能表面设计与分析
- 批准号:
24K17272 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atomic-scale surface and interface structural analysis of crystal growth process in molten metal
熔融金属中晶体生长过程的原子尺度表面和界面结构分析
- 批准号:
23H01850 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
- 批准号:
23K03140 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive analysis of optical properties and evolutionary and diversification processes in the body surface of gelatinous zooplankton
胶状浮游动物体表光学特性及进化多样化过程综合分析
- 批准号:
23H02298 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
- 批准号:
23K03175 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI: Track 1 Acquisition of Nexsa G2 XPS Surface Analysis System
MRI:Nexsa G2 XPS 表面分析系统的 Track 1 采购
- 批准号:
2320335 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
Assessment of self-association of monoclonal antibody molecules by analysis of the protein layer detected at the proximity of a solid surface
通过分析在固体表面附近检测到的蛋白质层来评估单克隆抗体分子的自缔合
- 批准号:
10726173 - 财政年份:2023
- 资助金额:
$ 41.98万 - 项目类别:
Genome-wide analysis of the biogenesis and function of surface structures involved in interbacterial interactions
对参与细菌间相互作用的表面结构的生物发生和功能进行全基因组分析
- 批准号:
RGPIN-2019-06044 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
Discovery Grants Program - Individual
Chemical analysis of plant surface waxes as biomarkers for solving ecological questions
植物表面蜡的化学分析作为解决生态问题的生物标志物
- 批准号:
574327-2022 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
University Undergraduate Student Research Awards
Development of corrosion characteristics evaluation method based on visualization of adhesion substance on steel bridge surface by near-infrared analysis
近红外分析钢桥表面附着物可视化腐蚀特性评价方法的开发
- 批准号:
22K14309 - 财政年份:2022
- 资助金额:
$ 41.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists