Thematic Program: The Mathematics of Drug Resistance in Infectious Diseases

专题项目:传染病耐药性数学

基本信息

  • 批准号:
    1004049
  • 负责人:
  • 金额:
    $ 4.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

The Fields Institute in Toronto will host and fund (Canadian $200,000) a Thematic Program on The Mathematics of Drug Resistance in Infectious Diseases", July-August 2010. This application seeks support for junior U.S. researchers (graduate students, postdoctoral fellows, and junior faculty) to participate in the program.Drug resistance by bacteria and virus has been regarded as one of the biggest threats to public health in the new century. The proposed two-month thematic program at the Fields Institute will focus on the Emergence of Drug Resistance in Infectious Diseases and will bring together leading researchers in mathematical epidemiology/immunology from around the world in order to stimulate major progress in this area. The program will consist of two main sub-themes that are of fundamental importance to understanding and predicting the emergence of drug resistance: (a) Mathematical Immunology: from In-host to Population Modeling; (b) Transmission Heterogeneity in Infectious Diseases. Each of the above sub-themes represents an important area of current research interest and importance to public health, and each also provides ample opportunities for the advancement of mathematical theories and techniques.This award is being jointly funded by the Division of Mathematical Sciences and by the Office of International Science and Engineering (OISE).
多伦多的菲尔兹研究所将于2010年7月至8月主办并资助(200 000加元)一个关于传染病耐药性数学的专题方案。该申请寻求对美国初级研究人员(研究生、博士后研究员和初级教师)参与该计划的支持。细菌和病毒的耐药性已被视为新世纪公共卫生的最大威胁之一。菲尔兹研究所拟议的为期两个月的专题计划将重点关注传染病耐药性的出现,并将汇集来自世界各地的数学流行病学/免疫学领域的领先研究人员,以促进这一领域的重大进展。该计划将包括两个主要的子主题,这是至关重要的理解和预测耐药性的出现:(a)数学免疫学:从宿主到群体建模;(B)传染病的传播异质性。上述每一个副主题都代表了当前研究兴趣的一个重要领域,对公共卫生具有重要意义,每个副主题都为数学理论和技术的进步提供了充分的机会。该奖项由数学科学部和国际科学与工程办公室(OISE)共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shigui Ruan其他文献

Stability and Hopf bifurcation of a tumor–immune system interaction model with an immune checkpoint inhibitor
肿瘤免疫系统与免疫检查点抑制剂相互作用模型的稳定性和 Hopf 分岔
Global Dynamics and Complex Patterns in Lotka-Volterra Systems: The Effects of Both Local and Nonlocal Intraspecific and Interspecific Competitions
Lotka-Volterra 系统中的全球动态和复杂模式:局部和非局部种内和种间竞争的影响
Analysis of a multi-patch dynamical model about cattle brucellosis
牛布鲁氏菌病多斑块动力学模型分析
Modelling homosexual and heterosexual transmissions of hepatitis B virus in China
中国乙型肝炎病毒同性和异性传播模型
  • DOI:
    10.1080/17513758.2021.1896797
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Min Lu;Yaqin Shu;Jicai Huang;Shigui Ruan;Xinan Zhang;Lan Zou
  • 通讯作者:
    Lan Zou
Global properties of vector host model with time delays
时滞矢量宿主模型的全局特性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Liming Cai;Xuezhi Li;Bin Fang;Shigui Ruan
  • 通讯作者:
    Shigui Ruan

Shigui Ruan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shigui Ruan', 18)}}的其他基金

Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
  • 批准号:
    1853622
  • 财政年份:
    2019
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics in Structured Biological and Epidemiological Models
结构化生物和流行病学模型中的非线性动力学
  • 批准号:
    1412454
  • 财政年份:
    2014
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant
The Fourth Conference on Computational and Mathematical Population Dynamics
第四届计算与数学群体动力学会议
  • 批准号:
    1266178
  • 财政年份:
    2013
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics in Structured Biological and Epidemiological Models
结构化生物和流行病学模型中的非线性动力学
  • 批准号:
    1022728
  • 财政年份:
    2010
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
The Third Conference on Computational and Mathematical Population Dynamics (CMPD3)
第三届计算与数学群体动力学会议(CMPD3)
  • 批准号:
    1016803
  • 财政年份:
    2010
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
Spatial Heterogeneity, Nonlocal Interactions and Time Delay in Biological and Epidemiological Spread
生物和流行病学传播的空间异质性、非局部相互作用和时间延迟
  • 批准号:
    0715772
  • 财政年份:
    2007
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
Spatial Heterogeneity, Nonlocal Interactions and Time Delay in Epidemiological and Biological Spread
流行病学和生物传播的空间异质性、非局部相互作用和时间延迟
  • 批准号:
    0412047
  • 财政年份:
    2004
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant

相似海外基金

Improving Secondary Mathematics Education through a Teacher Education Program Grounded in Community, Equity, and Inclusion
通过基于社区、公平和包容的教师教育计划改善中学数学教育
  • 批准号:
    2345005
  • 财政年份:
    2024
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant
Conference: Women+ and Mathematics Program
会议:妇女与数学计划
  • 批准号:
    2350008
  • 财政年份:
    2024
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
  • 批准号:
    2348984
  • 财政年份:
    2024
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant
Program Assessment Conference for Mathematics: Creating Tools for Math Departments to Self-Assess Professional Development Programs for their Graduate Student Instructors
数学项目评估会议:为数学系创建工具来自我评估研究生导师的专业发展项目
  • 批准号:
    2306211
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
The RISE Postdoctoral Training Program in Mathematics Education: Inclusive STEM Education rooted in an Integrative Theory of Learning
RISE数学教育博士后培训项目:植根于综合学习理论的全纳STEM教育
  • 批准号:
    2329497
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
An Empirical Study on the Development of a Mathematics Program for the Early Childhood and Elementary School Connections that Fosters Recognition of Pattern
关于开发幼儿和小学数学课程以促进模式识别的实证研究
  • 批准号:
    23K02421
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Role of a Technology-Based Adaptive Learning and Assessment Program in Supporting Mathematics and Statistics Corequisite Courses
基于技术的适应性学习和评估计划在支持数学和统计学必修课程中的作用
  • 批准号:
    2235912
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Standard Grant
REU Site: Georgia Institute of Technology Mathematics REU Program
REU 网站:佐治亚理工学院数学 REU 项目
  • 批准号:
    2244427
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant
Developing 21st Century Inclusive- and Mathematical Literacy-Driven Middle School and High School Mathematics Teachers: SJSU’s Mathematics Integrated Teacher Preparation Program
培养 21 世纪包容性和数学素养驱动的初中和高中数学教师:SJSU 数学综合教师准备计划
  • 批准号:
    2151134
  • 财政年份:
    2022
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant
Preparing mentors to support novices in eliciting student thinking during mathematics discussions: Developing and testing a simulation-based PD program
准备导师来支持新手在数学讨论中引发学生思考:开发和测试基于模拟的 PD 程序
  • 批准号:
    2200915
  • 财政年份:
    2022
  • 资助金额:
    $ 4.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了