Nonlinear Dynamics in Structured Biological and Epidemiological Models

结构化生物和流行病学模型中的非线性动力学

基本信息

  • 批准号:
    1022728
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

In this proposal, the PI proposes to study the nonlinear dynamics of structured population models and apply the results to investigate some specific biological and epidemiological problems. Firstly, the PI will study the nonlinear dynamics of semilinear equations with non-dense domain and apply to age-structured models in epidemiology and population dynamics. Secondly, the PI will consider the existence of traveling wave solutions of nonlocal advection-reaction-diffusion equations. The main results can be applied to study traveling wave solutions in vector-host models and competition models described by advection-reaction-diffusion equations with spatio-temporal delay, which describes the nonlocal interactions and latency. The PI proposes to investigate the spatio-temporal dynamics of such models and to understand how vector-borne diseases (such as dengue and malaria) and invasive species spread spatially. Thirdly, the PI will investigate the role of environment contamination on the clinical epidemiology of antibiotic-resistant bacteria in hospitals focusing on the interactions between health-care workers, patients and the environment. Structured population dynamics classify individuals according to their characteristics and states (such as age, size, location, status, and movement) to determine the birth, growth and death rates of the populations and their interactions with each other and with environment. Typically, the structuring variables are age (age of the individual, chronological time since infection or time since cell division), size, maturity level, space, latency, etc. The goal of structured population dynamics is to study how these characteristics and states affect the properties of these models and the outcomes and consequences of the biological and epidemiological processes. The PI proposes to investigate nonlinear dynamics of structured models and apply the results to study transmission dynamics of infectious diseases, such as influenza A, hepatitis B, and some vector-borne diseases. Via mathematical modeling and analysis, the PI will also study the role of environment contamination on the clinical epidemiology of antibiotic-resistant bacteria in hospitals, identify factors responsible for bacterial infection, and look for efficient control measures.
在这项建议中,PI建议研究结构种群模型的非线性动力学,并将结果应用于研究一些特定的生物学和流行病学问题。首先,PI将研究具有非稠密区域的半线性方程的非线性动力学,并应用于流行病学和人口动力学中的年龄结构模型。其次,PI将考虑非局部对流-反应-扩散方程的行波解的存在性。主要结果可用于研究具有时空延迟的对流-反应-扩散方程所描述的矢量-宿主模型和竞争模型中的行波解,该方程描述非局部相互作用和延迟。国际和平研究所建议调查这些模型的时空动态,并了解媒介传播的疾病(如登革热和疟疾)和入侵物种如何在空间上传播。第三,PI将调查环境污染对医院耐药细菌临床流行病学的作用,重点是医护人员、患者和环境之间的相互作用。结构化种群动力学根据个体的特征和状态(如年龄、大小、位置、地位和运动)对个体进行分类,以确定种群的出生、生长和死亡率以及它们之间的相互作用和与环境的相互作用。通常,结构变量是年龄(个体的年龄、感染以来的时间或细胞分裂以来的时间)、大小、成熟程度、空间、潜伏期等。结构化种群动力学的目标是研究这些特征和状态如何影响这些模型的特性以及生物学和流行病学过程的结果和后果。PI建议研究结构化模型的非线性动力学,并将其结果应用于研究传染病的传播动力学,如甲型流感、乙肝和一些媒介传播的疾病。通过数学建模和分析,PI还将研究环境污染对医院耐药细菌临床流行病学的影响,找出导致细菌感染的因素,并寻找有效的控制措施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shigui Ruan其他文献

Stability and Hopf bifurcation of a tumor–immune system interaction model with an immune checkpoint inhibitor
肿瘤免疫系统与免疫检查点抑制剂相互作用模型的稳定性和 Hopf 分岔
Global Dynamics and Complex Patterns in Lotka-Volterra Systems: The Effects of Both Local and Nonlocal Intraspecific and Interspecific Competitions
Lotka-Volterra 系统中的全球动态和复杂模式:局部和非局部种内和种间竞争的影响
Analysis of a multi-patch dynamical model about cattle brucellosis
牛布鲁氏菌病多斑块动力学模型分析
Modelling homosexual and heterosexual transmissions of hepatitis B virus in China
中国乙型肝炎病毒同性和异性传播模型
  • DOI:
    10.1080/17513758.2021.1896797
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Min Lu;Yaqin Shu;Jicai Huang;Shigui Ruan;Xinan Zhang;Lan Zou
  • 通讯作者:
    Lan Zou
Global properties of vector host model with time delays
时滞矢量宿主模型的全局特性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Liming Cai;Xuezhi Li;Bin Fang;Shigui Ruan
  • 通讯作者:
    Shigui Ruan

Shigui Ruan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shigui Ruan', 18)}}的其他基金

Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
  • 批准号:
    1853622
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics in Structured Biological and Epidemiological Models
结构化生物和流行病学模型中的非线性动力学
  • 批准号:
    1412454
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
The Fourth Conference on Computational and Mathematical Population Dynamics
第四届计算与数学群体动力学会议
  • 批准号:
    1266178
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
The Third Conference on Computational and Mathematical Population Dynamics (CMPD3)
第三届计算与数学群体动力学会议(CMPD3)
  • 批准号:
    1016803
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Thematic Program: The Mathematics of Drug Resistance in Infectious Diseases
专题项目:传染病耐药性数学
  • 批准号:
    1004049
  • 财政年份:
    2010
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Spatial Heterogeneity, Nonlocal Interactions and Time Delay in Biological and Epidemiological Spread
生物和流行病学传播的空间异质性、非局部相互作用和时间延迟
  • 批准号:
    0715772
  • 财政年份:
    2007
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Spatial Heterogeneity, Nonlocal Interactions and Time Delay in Epidemiological and Biological Spread
流行病学和生物传播的空间异质性、非局部相互作用和时间延迟
  • 批准号:
    0412047
  • 财政年份:
    2004
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: RUI: Structured Population Dynamics Subject to Stoichiometric Constraints
合作研究:RUI:受化学计量约束的结构化人口动态
  • 批准号:
    2322104
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
RI Core: Medium: Structured variability in vocal tract articulation dynamics in speech
RI 核心:中:言语中声道发音动态的结构变异
  • 批准号:
    2311676
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Structured Population Dynamics Subject to Stoichiometric Constraints
合作研究:RUI:受化学计量约束的结构化人口动态
  • 批准号:
    2322102
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Structured Population Dynamics Subject to Stoichiometric Constraints
合作研究:RUI:受化学计量约束的结构化人口动态
  • 批准号:
    2322103
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Studies on mathematical models for infectious diseases based on structured population dynamics
基于结构化群体动力学的传染病数学模型研究
  • 批准号:
    22K03433
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Delay, impulsive, structured and stochastic systems with applications to population dynamics
延迟、脉冲、结构化和随机系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2020-03934
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of regime shifts in diverse and spatially structured marine communities
多样化和空间结构海洋群落的政权转变动态
  • 批准号:
    RGPIN-2020-05543
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary dynamics of dense, spatially structured, and antagonistic microbial populations
密集、空间结构和对抗性微生物种群的进化动力学
  • 批准号:
    10684081
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
Delay, impulsive, structured and stochastic systems with applications to population dynamics
延迟、脉冲、结构化和随机系统及其在群体动态中的应用
  • 批准号:
    RGPIN-2020-03934
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of regime shifts in diverse and spatially structured marine communities
多样化和空间结构海洋群落的政权转变动态
  • 批准号:
    RGPIN-2020-05543
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了