Conference on Topology and Geometry in Dimension Three: Triangulations, Invariants, and Geometric Structures; June 2010; Oklahoma City, OK
第三维度拓扑和几何会议:三角剖分、不变量和几何结构;
基本信息
- 批准号:1005383
- 负责人:
- 金额:$ 2.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Conference on "Topology and Geometry in Dimension Three: Triangulations, Invariants, and Geometric Structures" will be held at Oklahoma State University, June 4-6, 2010. The conference brings together experts and emerging researchers to report on recent results and explore future directions in the study and understanding of 3-manifolds. Geometric structures on 3-manifolds are known to exist but relatively little is known about direct construction of these geometric structures; specifically, constructing the geometry from a description, such as a Heegaard splitting or triangulation of the manifold. This conference will highlight finding direct connections between topological structures on 3-manifolds (triangulations in particular) and geometric structures and expanding the use of these structures to a study of new invariants and applications of hyperbolic geometry to 3-manifolds.Three-dimensional space provides the local space-model for much of science and engineering. Three-manifolds are locally modeled on three-dimensional space and their study and understanding leads to better predictions and understanding in science and more effective applications in engineering and technology. Recent advances in our understanding of three-manifolds has generated new energy making it one of the most exciting and rapidly advancing areas in mathematics; and making this Conference very timely for reporting on emerging results and plotting future directions.
关于“拓扑和三维几何:三角剖分,不变量和几何结构”的会议将于2010年6月4日至6日在俄克拉荷马州州立大学举行。 会议汇集了专家和新兴的研究人员,报告最近的结果,并探讨未来的方向,在研究和理解3-流形。三维流形上的几何结构是已知的,但对这些几何结构的直接构造知之甚少;具体地说,从描述中构造几何,如流形的Heegaard分裂或三角剖分。 本次会议将突出寻找3-流形上的拓扑结构(特别是三角剖分)和几何结构之间的直接联系,并将这些结构的使用扩展到新的不变量的研究和双曲几何在3-流形上的应用。三维空间为许多科学和工程提供了局部空间模型。 三维流形是在三维空间上局部建模的,对它们的研究和理解导致了科学上更好的预测和理解,以及在工程和技术上更有效的应用。 我们对三流形的理解的最新进展产生了新的能量,使其成为数学中最令人兴奋和快速发展的领域之一;并使本次会议非常及时地报告新出现的结果和规划未来的方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiping Li其他文献
Index Option Returns and Systemic Equity Risk
指数期权收益和系统性股票风险
- DOI:
10.1016/j.jfds.2018.05.001 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Weiping Li;Tim Krehbiel - 通讯作者:
Tim Krehbiel
Pricing and hedging of arithmetic Asian options via the Edgeworth series expansion approach
通过埃奇沃斯级数展开法对算术亚洲期权进行定价和对冲
- DOI:
10.1016/j.jfds.2016.01.001 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Weiping Li;Su Chen - 通讯作者:
Su Chen
Supportiveness-based Knowledge Rewriting for Retrieval-augmented Language Modeling
用于检索增强语言建模的基于支持性的知识重写
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zile Qiao;Wei Ye;Yong Jiang;Tong Mo;Pengjun Xie;Weiping Li;Fei Huang;Shikun Zhang - 通讯作者:
Shikun Zhang
A variable hydrophobic surface improves corrosion resistance of electroplating copper coating
可变疏水表面提高电镀铜涂层的耐腐蚀性
- DOI:
10.1016/j.apsusc.2011.01.015 - 发表时间:
2011-04 - 期刊:
- 影响因子:6.7
- 作者:
Huicong Liu;Xiuqing Xu;Weiping Li;Liqun Zhu - 通讯作者:
Liqun Zhu
Künneth formulae and cross products for the symplectic Floer cohomology
辛 Floer 上同调的 Künneth 公式和叉积
- DOI:
10.1016/s0166-8641(99)00184-4 - 发表时间:
2001 - 期刊:
- 影响因子:0.6
- 作者:
Weiping Li - 通讯作者:
Weiping Li
Weiping Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiping Li', 18)}}的其他基金
Conference on Topology and Geometry of Knots
结拓扑与几何会议
- 批准号:
0900229 - 财政年份:2009
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology, Arithmetic Groups and Toric Varieties
数学科学:拓扑、算术群和环面簇
- 批准号:
9704535 - 财政年份:1997
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Atiyah's Conjectures on Floer Homology
数学科学:阿蒂亚关于弗洛尔同调的猜想
- 批准号:
9626166 - 财政年份:1996
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Research Initiation: Closed-loop Shape Control During Hot Isostatic Pressing Process
研究启动:热等静压过程中的闭环形状控制
- 批准号:
9210970 - 财政年份:1992
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
相似海外基金
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
- 批准号:
2348932 - 财政年份:2024
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
The 2022 Graduate Student Topology and Geometry Conference
2022年研究生拓扑与几何会议
- 批准号:
2208225 - 财政年份:2022
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Conference in Geometry, Topology, and Dynamics: Celebrating the Work of Diverse Mathematicians
几何、拓扑和动力学会议:庆祝不同数学家的工作
- 批准号:
2139125 - 财政年份:2021
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
2020 Redbud Geometry/Topology Conference
2020紫荆花几何/拓扑会议
- 批准号:
1953775 - 财政年份:2020
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
- 批准号:
2027247 - 财政年份:2020
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
The 2020 Graduate Student Topology and Geometry Conference
2020年研究生拓扑与几何会议
- 批准号:
1953179 - 财政年份:2020
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
CBMS Conference: K-theory of Operator Algebras and Its Applications to Geometry and Topology
CBMS 会议:算子代数的 K 理论及其在几何和拓扑中的应用
- 批准号:
1933327 - 财政年份:2020
- 资助金额:
$ 2.28万 - 项目类别:
Standard Grant
Temple University Graduate Student Conference in Algebra, Geometry, and Topology
天普大学代数、几何和拓扑研究生会议
- 批准号:
1856193 - 财政年份:2019
- 资助金额:
$ 2.28万 - 项目类别:
Continuing Grant