Mathematical Sciences: Topology, Arithmetic Groups and Toric Varieties
数学科学:拓扑、算术群和环面簇
基本信息
- 批准号:9704535
- 负责人:
- 金额:$ 7.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-15 至 2001-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704535 McConnell The project has three parts. First, let G = SL(n,R), let Gamma be an arithmetic subgroup of G, and let X be the symmetric space for G. The spaces X/Gamma are one setting where automorphic forms can be defined; they provide a topological approach to parts of the Langlands conjectures. For each Hecke operator T on the cohomology of X/Gamma, MacPherson and McConnell have defined a cell complex W(T) which allows one to find the operator by cellular techniques, i.e., using only a finite amount of combinatorial data. They will investigate W(T) and extend the definition to more G. In the second part, Ash and McConnell are computing the cohomology of X/Gamma in degree five for certain Gamma for SL(4). The goal is to determine the cuspidal classes and the Hecke action on them. The third part concerns Sheafhom, a suite of computer programs McConnell has developed. Sheafhom provides models of chain complexes, spectral sequences, sheaves, and other objects. The largest application to date is its algorithm for finding the intersection homology (IH) of toric varieties in any perversity. One goal is to compute the intersection product on IH of toric varieties, with applications to convex polytopes. Sheafhom has also been used in the Ash-McConnell work. A computer algebra system is a program for calculation with algebra, as opposed to numbers. Any program can find 2 + 2, but a computer algebra system combines whole formulas: the input (2x + 7) + (4x - 3) becomes 6x + 4 automatically. This capacity is more abstract, hence more flexible. Excellent general-purpose systems, like Maple or Mathematica, are available, but of course they don't have everything that every mathematician needs. In recent years, several disciplines have been given their own special-purpose systems-- Cayley/Magma for algebraists, Pari for number theorists, and a dozen others. McConnell has written Sheafhom, a computer algebra system for algebraic topology. The program, some 10,000 lines long, is written in Lisp, one of the liveliest (and most efficient) programming languages. The goal is to apply Sheafhom to study convex polytopes. Convex polyhedra are solid bodies with flat faces, like cubes, pyramids, or hundred-faced diamonds. A convex polytope is the same kind of body in the fourth or higher dimension. Since 1980, algebraic geometry has become a major tool for studying polytopes. This is surprising, because algebraic geometry includes some of the most abstract mathematics known, while polytopes, like crystals, are very concrete objects. Sheafhom will make possible some difficult computations in algebraic topology and geometry; these will advance our understanding of convex polytopes. McConnell's project actually has two other parts that are more loosely related to Sheafhom. These are connected with the Langlands conjectures, a very deep set of ideas that relates number theory to other, more geometric parts of mathematics. ***
小行星9704535 该项目有三个部分。 首先,设G = SL(n,R),Gamma是G的一个算术子群,X是G的对称空间. 空间X/Gamma是可以定义自守形式的一种设置;它们为朗兰兹拓扑的一部分提供了一种拓扑方法。 对于X/Gamma上同调的每个Hecke算子T,MacPherson和McConnell定义了一个胞腔复形W(T),它允许人们通过胞腔技术找到算子,即,只使用有限数量的组合数据。 他们将研究W(T),并将定义扩展到更多的G。 在第二部分中,Ash和McConnell正在计算SL(4)的某些Gamma的X/Gamma五次上同调。 我们的目标是确定尖点类和它们上的Hecke作用。 第三部分涉及Sheafhom,这是McConnell开发的一套计算机程序。 Sheafhom提供了链复合体、谱序列、层和其他对象的模型。 迄今为止最大的应用是它的算法,用于寻找任何反常的复曲面品种的交叉同源性(IH)。 一个目标是计算的交集产品的IH环面品种,与应用凸多面体。 Sheafhom也被用于Ash-McConnell的工作。 计算机代数系统是一个用代数计算的程序,而不是数字。 任何程序都可以找到2 + 2,但计算机代数系统会将整个公式组合起来:输入的(2x + 7)+(4x - 3)自动变成6x + 4。 这种能力更抽象,因此更灵活。 优秀的通用系统,如Maple或Mathematica,是可用的,但当然它们没有每个数学家需要的一切。 近年来,几个学科都有了自己的专用系统--代数学家的Cayley/Magma,数论学家的Pari,以及其他十几个学科。 麦康奈尔写了Sheafhom,一个代数拓扑的计算机代数系统。 这个程序大约有10,000行,是用Lisp编写的,Lisp是最简单(也是最有效)的编程语言之一。 我们的目标是应用Sheafhom来研究凸多面体。 凸多面体是具有平面的实体,如立方体、金字塔或百面金刚石。 凸多面体是第四维或更高维中的同类物体。 自1980年以来,代数几何已成为研究多面体的主要工具。 这是令人惊讶的,因为代数几何包括一些已知的最抽象的数学,而多面体,如晶体,是非常具体的对象。 Sheafhom将使代数拓扑和几何中的一些困难计算成为可能;这些将促进我们对凸多面体的理解。 麦康奈尔的项目实际上还有另外两个部分与Sheafhom的关系更为松散。 这些都与朗兰兹定理有关,朗兰兹定理是一套非常深刻的思想,它将数论与数学中其他更几何的部分联系起来。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weiping Li其他文献
Index Option Returns and Systemic Equity Risk
指数期权收益和系统性股票风险
- DOI:
10.1016/j.jfds.2018.05.001 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Weiping Li;Tim Krehbiel - 通讯作者:
Tim Krehbiel
Pricing and hedging of arithmetic Asian options via the Edgeworth series expansion approach
通过埃奇沃斯级数展开法对算术亚洲期权进行定价和对冲
- DOI:
10.1016/j.jfds.2016.01.001 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Weiping Li;Su Chen - 通讯作者:
Su Chen
Supportiveness-based Knowledge Rewriting for Retrieval-augmented Language Modeling
用于检索增强语言建模的基于支持性的知识重写
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zile Qiao;Wei Ye;Yong Jiang;Tong Mo;Pengjun Xie;Weiping Li;Fei Huang;Shikun Zhang - 通讯作者:
Shikun Zhang
A variable hydrophobic surface improves corrosion resistance of electroplating copper coating
可变疏水表面提高电镀铜涂层的耐腐蚀性
- DOI:
10.1016/j.apsusc.2011.01.015 - 发表时间:
2011-04 - 期刊:
- 影响因子:6.7
- 作者:
Huicong Liu;Xiuqing Xu;Weiping Li;Liqun Zhu - 通讯作者:
Liqun Zhu
Künneth formulae and cross products for the symplectic Floer cohomology
辛 Floer 上同调的 Künneth 公式和叉积
- DOI:
10.1016/s0166-8641(99)00184-4 - 发表时间:
2001 - 期刊:
- 影响因子:0.6
- 作者:
Weiping Li - 通讯作者:
Weiping Li
Weiping Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weiping Li', 18)}}的其他基金
Conference on Topology and Geometry in Dimension Three: Triangulations, Invariants, and Geometric Structures; June 2010; Oklahoma City, OK
第三维度拓扑和几何会议:三角剖分、不变量和几何结构;
- 批准号:
1005383 - 财政年份:2010
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Conference on Topology and Geometry of Knots
结拓扑与几何会议
- 批准号:
0900229 - 财政年份:2009
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Atiyah's Conjectures on Floer Homology
数学科学:阿蒂亚关于弗洛尔同调的猜想
- 批准号:
9626166 - 财政年份:1996
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Research Initiation: Closed-loop Shape Control During Hot Isostatic Pressing Process
研究启动:热等静压过程中的闭环形状控制
- 批准号:
9210970 - 财政年份:1992
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
- 批准号:
1608194 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Topology Conferences at the Pacific Institute for the Mathematical Sciences
太平洋数学科学研究所的拓扑会议
- 批准号:
1506202 - 财政年份:2015
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences: Algebraic Topology in Applied Mathematics; Summer 2009, Cleveland, OH
CBMS 数学科学区域会议:应用数学中的代数拓扑;
- 批准号:
0834140 - 财政年份:2009
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Topology, C*- algebras, and String Duality, June 2008
NSF/CBMS 数学科学区域会议:拓扑、C*- 代数和弦对偶性,2008 年 6 月
- 批准号:
0735233 - 财政年份:2008
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
0196235 - 财政年份:2000
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
9996368 - 财政年份:1998
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Low-Dimensional Topology and Gauge Theory
数学科学:低维拓扑和规范论
- 批准号:
9896376 - 财政年份:1998
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Low-Dimensional Topology in Group Theory
数学科学:群论中的几何和低维拓扑
- 批准号:
9703756 - 财政年份:1997
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Low-Dimensional Geometry and Topology
数学科学:低维几何和拓扑
- 批准号:
9704135 - 财政年份:1997
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: The 1997 Spring Topology and Dynamics Conference
数学科学:1997 年春季拓扑与动力学会议
- 批准号:
9614982 - 财政年份:1997
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant