Geometry and applications of deformations of Riemann surfaces
黎曼曲面变形的几何及应用
基本信息
- 批准号:1005852
- 负责人:
- 金额:$ 16.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will continue his study of geodesics (shortest paths), convexity and curvature (the fundamental descriptor for a geometry) for the Weil-Petersson geometry for Teichmueller space. The investigator has already shown that Teichmueller space is an infinite polyhedron with an infinite number of vertices and geodesic faces meeting at right angles. The description gives a short proof of the Masur-Wolf result determining the full symmetry group of the polyhedron. The investigator has provided detailed information on the geometry near the faces. Lengths of closed geodesics (shortest closed paths) on a hyperbolic surface are parameters for locating a point in Teichmueller space. The investigator will continue his program of using analysis of variations of the lengths to describe the synthetic and differential geometry of Teichmueller space. The description is simpler than the investigator's prior approach, which is presently used by a number of researchers. The investigator is developing a description of curvature in terms of variations of lengths. The investigator will also study harmonic (least total square energy) mappings to and from the infinite polyhedron. He will also continue to study the Weil-Petersson geodesic dynamical system, as well as intersection theory for the moduli space of Riemann surfaces.A Riemann surface is a two-dimensional surface with a notion of angle measure at each point. A Riemann surface with at least two handles is endowed with non Euclidean (hyperbolic) geometry determining distance, shortest paths and a vibrating membrane operator. Riemann surfaces come in various shapes, described by the relative locations of thick and thin subregions. Teichmueller space is the space of all possible shapes for a Riemann surface with a given number of handles. The hyperbolic geometry of individual Riemann surfaces leads to the Weil-Petersson geometry for Teichmueller space. Riemann surfaces provide models for vibrating membranes, propagating particles and fractals.
调查员将继续他的研究测地线(最短路径),凸性和曲率(基本描述几何)的威尔-彼得森几何Teichmueller空间。研究者已经证明了Teichmueller空间是一个无限多面体,有无限多个顶点和测地线面以直角相交。 描述给出了一个简短的证明的Masur-Wolf结果确定充分对称群的多面体。调查人员提供了关于面部附近几何形状的详细信息。双曲曲面上的闭测地线(最短闭路)的长度是用于在Teichmueller空间中定位点的参数。研究人员将继续他的计划,使用分析的变化的长度来描述合成和微分几何的Teichmueller空间。 这种描述比研究者先前的方法更简单,目前许多研究人员正在使用这种方法。研究者正在根据长度的变化对曲率进行描述。 研究人员还将研究谐波(最小总平方能量)映射到无限多面体和从无限多面体。他还将继续研究Weil-Petersson测地动力系统,以及黎曼曲面的模空间的相交理论。黎曼曲面是一个二维曲面,每个点都有角度测度的概念。一个黎曼曲面至少有两个手柄被赋予非欧(双曲)几何确定距离,最短路径和振动膜运营商。黎曼曲面有各种形状,由厚和薄子区域的相对位置描述。Teichmueller空间是具有给定数量的把手的黎曼曲面的所有可能形状的空间。单个黎曼曲面的双曲几何导致Teichmueller空间的Weil-Petersson几何。黎曼曲面为振动膜、传播粒子和分形提供了模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Wolpert其他文献
Scott Wolpert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Wolpert', 18)}}的其他基金
INCLUDES DDLP: Creating Opportunities in the Mathematical Sciences through Equity and INclusion (COME-IN)
包括 DDLP:通过公平和包容性创造数学科学机会 (COME-IN)
- 批准号:
2304106 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
Geometries, surfaces and representations of fundamental groups
基本群的几何、曲面和表示
- 批准号:
1632493 - 财政年份:2016
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
University of Maryland Computer Science, Engineering and Mathematics Scholarship Program
马里兰大学计算机科学、工程和数学奖学金计划
- 批准号:
0094818 - 财政年份:2001
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Arithematic Manifolds: Geodesics, Spectra and L-Functions
算术流形:测地线、谱和 L 函数
- 批准号:
9800701 - 财政年份:1998
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Asymptotics for Hyperbolic Surfaces and Real-Projective Structures
数学科学:双曲曲面和实射影结构的谱渐近
- 批准号:
9504176 - 财政年份:1995
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Geometry for Riemann Surfaces and the Moduli Space
数学科学:黎曼曲面和模空间的谱几何
- 批准号:
9201669 - 财政年份:1992
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical Geometry of Families of Riemann Surfaces
数学科学:黎曼曲面族的解析几何
- 批准号:
8902609 - 财政年份:1989
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytic Geometry of Teichmuller Space
数学科学:Teichmuller 空间的解析几何
- 批准号:
8601954 - 财政年份:1986
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
Mathematical Sciences: Moduli Space of Curves
数学科学:曲线模空间
- 批准号:
8401379 - 财政年份:1984
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
Conformal Geometry of Riemann Surfaces
黎曼曲面的共形几何
- 批准号:
8001894 - 财政年份:1980
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CAREER: Models for Galois deformations and Applications
职业:伽罗瓦变形模型和应用
- 批准号:
2237237 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Continuing Grant
Experiment-based multi-scale modeling of the tensile and compressive deformations of fibrin
基于实验的纤维蛋白拉伸和压缩变形的多尺度建模
- 批准号:
9218422 - 财政年份:2017
- 资助金额:
$ 16.74万 - 项目类别:
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2015
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Deformations of discrete curves and their applications
离散曲线的变形及其应用
- 批准号:
15K04862 - 财政年份:2015
- 资助金额:
$ 16.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2014
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2013
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2012
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2012
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2011
- 资助金额:
$ 16.74万 - 项目类别:
Discovery Grants Program - Individual
Deformations of the su(3) algebra, with applications
su(3) 代数的变形及其应用
- 批准号:
317187-2006 - 财政年份:2006
- 资助金额:
$ 16.74万 - 项目类别:
Postgraduate Scholarships - Master's














{{item.name}}会员




