Geometries, surfaces and representations of fundamental groups

基本群的几何、曲面和表示

基本信息

  • 批准号:
    1632493
  • 负责人:
  • 金额:
    $ 4.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

This NSF award provides partial support for a conference entitled "Geometries, surfaces and representations of fundamental groups," which will take place at the University of Maryland, College Park, on June 22-24, 2016. This meeting will bring together experts at the frontier of current work in this area from the United States and internationally, with a view towards open problems and future directions. The list of distinguished speakers will attract broad participation of students and postdoctoral researchers. Beginning mathematicians will be especially encouraged to attend. It is expected that the conference will itself generate research projects and provide a fertile ground for collaboration and the exchange of ideas. A major goal of this conference is to support, train and encourage the next generation of mathematicians in the fields of geometric structures and representations. The conference organizers are committed to ensuring a diverse and broad spectrum of participation. This conference will focus on recent developments in the rapidly developing field of geometric structures and representation varieties. The areas of focus for this meeting include Anosov structures, Higgs bundles and higher Teichmueller spaces, dynamics on moduli spaces, and pseudo-Riemannian structures. The list of fifteen internationally renowned principal speakers for this conference reflects the breadth of these topics and indicates the diversity of techniques in this subject. Additional 50-75 conference participants will include graduate students, postdoctoral scholars and faculty members. By bringing together all these speakers in one conference, the links between different approaches and techniques in this rich subject will be further strengthened. Videos and notes of the talks will be available on the conference website. The speakers will also be invited to submit papers to a volume of conference proceedings. The conference website is at: www-math.umd.edu/geometries/.
这项NSF奖将为2016年6月22日至24日在马里兰大学帕克分校举行的题为“几何、表面和基本群的表示”的会议提供部分支持。这次会议将汇集来自美国和国际的该领域当前工作前沿的专家,以探讨开放的问题和未来的方向。演讲者名单将吸引学生和博士后研究人员的广泛参与。特别鼓励初学的数学家参加。预计会议本身将产生研究项目,并为合作和思想交流提供肥沃的土壤。本次会议的一个主要目标是支持、培训和鼓励几何结构和几何表示领域的下一代数学家。会议组织者致力于确保多样化和广泛的参与。本次会议将重点讨论快速发展的几何结构和表现形式领域的最新进展。本次会议的重点领域包括:Anosov结构、希格斯束和更高的Teichmueller空间、模空间上的动力学以及伪黎曼结构。本次会议的15位国际知名首席演讲者的名单反映了这些主题的广度,并表明了该主题中技术的多样性。另外50-75名与会者将包括研究生、博士后学者和教职员工。通过将所有这些发言者聚集在一个会议上,这一丰富主题的不同方法和技术之间的联系将进一步加强。会议的视频和讲稿将在会议网站上提供。发言者还将被邀请向会议论文集提交论文。会议网站是:www-math.umd.edu/geometries/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Wolpert其他文献

Scott Wolpert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Wolpert', 18)}}的其他基金

INCLUDES DDLP: Creating Opportunities in the Mathematical Sciences through Equity and INclusion (COME-IN)
包括 DDLP:通过公平和包容性创造数学科学机会 (COME-IN)
  • 批准号:
    2304106
  • 财政年份:
    2023
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Continuing Grant
Geometry and applications of deformations of Riemann surfaces
黎曼曲面变形的几何及应用
  • 批准号:
    1005852
  • 财政年份:
    2010
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
University of Maryland Computer Science, Engineering and Mathematics Scholarship Program
马里兰大学计算机科学、工程和数学奖学金计划
  • 批准号:
    0094818
  • 财政年份:
    2001
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
Arithematic Manifolds: Geodesics, Spectra and L-Functions
算术流形:测地线、谱和 L 函数
  • 批准号:
    9800701
  • 财政年份:
    1998
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Spectral Asymptotics for Hyperbolic Surfaces and Real-Projective Structures
数学科学:双曲曲面和实射影结构的谱渐近
  • 批准号:
    9504176
  • 财政年份:
    1995
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Spectral Geometry for Riemann Surfaces and the Moduli Space
数学科学:黎曼曲面和模空间的谱几何
  • 批准号:
    9201669
  • 财政年份:
    1992
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analytical Geometry of Families of Riemann Surfaces
数学科学:黎曼曲面族的解析几何
  • 批准号:
    8902609
  • 财政年份:
    1989
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analytic Geometry of Teichmuller Space
数学科学:Teichmuller 空间的解析几何
  • 批准号:
    8601954
  • 财政年份:
    1986
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Moduli Space of Curves
数学科学:曲线模空间
  • 批准号:
    8401379
  • 财政年份:
    1984
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
Conformal Geometry of Riemann Surfaces
黎曼曲面的共形几何
  • 批准号:
    8001894
  • 财政年份:
    1980
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant

相似国自然基金

微阵列技术表面修饰Sapeptide膜结构支架诱导神经干细胞定向迁徙的研究
  • 批准号:
    30901511
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
  • 批准号:
    22KF0255
  • 财政年份:
    2023
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Surface group representations and geometry of negative curvature
负曲率的曲面组表示和几何
  • 批准号:
    20K03610
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extending the Range of Nonadiabatic Processes that Can Be Treated with Analytic Representations of Coupled Potential Energy Surfaces
扩展可以用耦合势能面的解析表示处理的非绝热过程的范围
  • 批准号:
    1954723
  • 财政年份:
    2020
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
High dimensional deformations of linear representations and distribution and complexity of essential surfaces
线性表示的高维变形以及基本表面的分布和复杂性
  • 批准号:
    18KK0380
  • 财政年份:
    2019
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Geometric structures on surfaces and representations into Lie groups
表面上的几何结构和李群的表示
  • 批准号:
    19K21023
  • 财政年份:
    2018
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
AF: Small: Collaborative Research: Computational Representations for Design and Fabrication of Developable Surfaces
AF:小型:协作研究:可展曲面设计和制造的计算表示
  • 批准号:
    1717320
  • 财政年份:
    2017
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Computational Representations for Design and Fabrication of Developable Surfaces
AF:小型:协作研究:可展曲面设计和制造的计算表示
  • 批准号:
    1717268
  • 财政年份:
    2017
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Standard Grant
Differential geometric approach to discrete surfaces
离散曲面的微分几何方法
  • 批准号:
    15K04845
  • 财政年份:
    2015
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on periodic surfaces using their representations by integrals of conformal one-forms
使用共形一式积分表示的周期曲面研究
  • 批准号:
    22540064
  • 财政年份:
    2010
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of algebraic groups over 2-dimensional fields, G-bundles on surfaces and mathematical physics
二维场上的代数群、曲面上的 G 丛和数学物理的表示
  • 批准号:
    0600851
  • 财政年份:
    2006
  • 资助金额:
    $ 4.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了