Complex Oscillations and Invariant Manifolds

复杂振荡和不变流形

基本信息

  • 批准号:
    1006272
  • 负责人:
  • 金额:
    $ 54.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This project studies the mathematical theory of dynamical systems with multiple time scales and develops new computational methods for bringing this theory to bear upon models of biological phenomena. The research employs geometric approaches to study these problems. In particular, it investigates invariant manifolds that play a key role in organizing complex oscillations. New computational methods for computing these manifolds are one focus of the research. Indeed, there is a general lack of methods for computer investigation of manifolds. Creation of a comprehensive ``smooth computational geometry'' is a long term goal of the research. The project also seeks to develop methods for fitting models to data. It is rare that all of the parameters of a complex dynamical model can be measured or that systematic methods are used to estimate these parameters from empirical time series data. With multiple time scale systems, this is a particularly difficult optimization problem because abrupt changes in the dynamics are not readily fit by the quadratic models upon which smooth optimization algorithms are based. This project seeks to identify where these abrupt changes occur. The methods also enable accurate sensitivity analysis that describes the rates of change of model trajectories as parameters are varied. They are designed to contribute to the toolkit of methods available for designing engineered systems with periodic operating states rather than ones which are steady.Dynamical systems theory is astonishingly successful in relating widely disparate phenomena observed in population dynamics, chemical reactions, lasers and much more. This project follows this tradition, seeking to explain universal dynamical behaviors observed in rhythmic processes, many of which display complex oscillations. Respiration, the heartbeat, circadian rhythms, menstrual cycles and animal locomotion are a few examples of biological rhythms to which the methods apply. All the primary modes of locomotion of higher animals: walking, running, slithering, swimming and flying result from cyclic motions of the body. Bursting oscillations that are ubiquitous in the nervous system exemplify temporal complexity: epochs of active firing of neurons alternate with quiescent periods. In mixed mode oscillations of non-equilibrium chemical reactors, epochs of large and small amplitude oscillations alternate. Multiple time scales are inherent in these complex oscillations. Thus, this project develops new methods for the analysis of dynamical systems with multiple time scales and the results yield a deeper mathematical understanding of how rapid changes in a system can result from variations of slow components. Geometric models reduce the mechanisms for such changes to their simplest forms and provide mathematical explanations for enigmatic results obtained from numerical simulations of systems with multiple time scales.
该项目研究多时间尺度动力系统的数学理论,并开发新的计算方法,将该理论应用于生物现象模型。该研究采用几何方法来研究这些问题。特别是,它研究了在组织复杂振荡中发挥关键作用的不变流形。计算这些流形的新计算方法是研究的焦点之一。事实上,普遍缺乏流形的计算机研究方法。创建全面的“平滑计算几何”是该研究的长期目标。该项目还寻求开发将模型与数据拟合的方法。复杂动态模型的所有参数都可以测量,或者使用系统方法从经验时间序列数据估计这些参数,这是很少见的。对于多时间尺度系统,这是一个特别困难的优化问题,因为动态的突然变化不容易被平滑优化算法所基于的二次模型拟合。该项目旨在确定这些突然变化发生的位置。这些方法还可以实现准确的敏感性分析,描述模型轨迹随参数变化的变化率。它们旨在为可用于设计具有周期性运行状态而不是稳定运行状态的工程系统的方法工具包做出贡献。动态系统理论在将群体动力学、化学反应、激光等中观察到的广泛不同现象联系起来方面取得了惊人的成功。该项目遵循这一传统,试图解释在节奏过程中观察到的普遍动力学行为,其中许多表现出复杂的振荡。 呼吸、心跳、昼夜节律、月经周期和动物运动是该方法适用的生物节律的几个例子。高等动物的所有主要运动方式:步行、跑步、滑行、游泳和飞行都是身体循环运动的结果。神经系统中普遍存在的爆发性振荡体现了时间复杂性:神经元的活跃放电时期与静止时期交替出现。在非平衡化学反应器的混合模式振荡中,大振幅振荡和小振幅振荡交替出现。这些复杂的振荡固有地存在多个时间尺度。因此,该项目开发了用于分析具有多个时间尺度的动力系统的新方法,其结果产生了对慢速组件的变化如何导致系统快速变化的更深入的数学理解。几何模型将这种变化的机制简化为最简单的形式,并为从多个时间尺度的系统数值模拟中获得的神秘结果提供数学解释。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Guckenheimer其他文献

Exercise 3.6.3 of Garcia and Sotomayor: a devil’s staircase of principal foliations
Staying the course: Locating equilibria of dynamical systems on Riemannian manifolds defined by point-clouds
坚持到底:在点云定义的黎曼流形上定位动力系统的平衡点
  • DOI:
    10.48550/arxiv.2204.10413
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. M. Bello;Anastasia S. Georgiou;John Guckenheimer;I. G. Kevrekidis
  • 通讯作者:
    I. G. Kevrekidis
NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42)
Symmetry properties of confined convective states
The catastrophe controversy
  • DOI:
    10.1007/bf03023037
  • 发表时间:
    1978-03-01
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    John Guckenheimer
  • 通讯作者:
    John Guckenheimer

John Guckenheimer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Guckenheimer', 18)}}的其他基金

Workshop on Complex Systems; September 2008, Arlington, VA
复杂系统研讨会;
  • 批准号:
    0840268
  • 财政年份:
    2008
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Standard Grant
Cornell Mathematics Research Computing Environment
康奈尔大学数学研究计算环境
  • 批准号:
    0532106
  • 财政年份:
    2005
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Standard Grant
IGERT - Program in Nonlinear Systems
IGERT - 非线性系统程序
  • 批准号:
    0333366
  • 财政年份:
    2003
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Continuing Grant
Bifurcation in Dynamical Systems with Multiple Time Scales
多时间尺度动力系统的分岔
  • 批准号:
    0101208
  • 财政年份:
    2001
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
  • 批准号:
    9707782
  • 财政年份:
    1997
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Standard Grant
Multiple Time Scales in Neuronal Models
神经元模型中的多个时间尺度
  • 批准号:
    9705780
  • 财政年份:
    1997
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Standard Grant
REU Site: Supercomputing Program for Undergraduate Research(1995-1997)
REU 网站:本科生研究超级计算计划(1995-1997)
  • 批准号:
    9424195
  • 财政年份:
    1995
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Continuing Grant
Mapping the Dynamics of a Neural Network
映射神经网络的动态
  • 批准号:
    9418041
  • 财政年份:
    1995
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Standard Grant
REU Site: Supercomputing Program for Undergraduate Research
REU 网站:本科生研究超级计算项目
  • 批准号:
    9322321
  • 财政年份:
    1994
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics of a Small Neural System
数学科学:小型神经系统的动力学
  • 批准号:
    9204098
  • 财政年份:
    1992
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Continuing Grant

相似海外基金

Neutrino oscillations with NOvA and DUNE
NOvA 和 DUNE 的中微子振荡
  • 批准号:
    2907985
  • 财政年份:
    2024
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Studentship
Survival Threshold for Collective Plasma Oscillations
集体等离子体振荡的生存阈值
  • 批准号:
    2349981
  • 财政年份:
    2024
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Continuing Grant
Refresh, Continuation, and Science Exploitation of the Birmingham Solar-Oscillations Network (BiSON)
伯明翰太阳振荡网络(BiSON)的更新、延续和科学开发
  • 批准号:
    ST/Z000025/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Research Grant
Creation of a curved cilia mechanism based on oviduct-like elastic oscillations that realizes super-adaptive propulsion into lumens with various shapes
创建基于类输卵管弹性振荡的弯曲纤毛机制,实现对各种形状管腔的超自适应推进
  • 批准号:
    23K17736
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Brain Mechanisms Underlying Changes in Neural Oscillations through Adolescent Cognitive Maturation
青少年认知成熟导致神经振荡变化的大脑机制
  • 批准号:
    10675169
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
The space-time organization of sleep oscillations as potential biomarker for hypersomnolence
睡眠振荡的时空组织作为嗜睡的潜在生物标志物
  • 批准号:
    10731224
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Cooperative Agreement
Long Baseline Neutrino Oscillations with DUNE and T2K
DUNE 和 T2K 的长基线中微子振荡
  • 批准号:
    2888836
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Studentship
Long-term correlation between Earth's background free oscillations and ocean gravity waves
地球背景自由振荡与海洋重力波之间的长期相关性
  • 批准号:
    23K03550
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alpha oscillations and working memory deficits in ADHD: A multimodal imaging investigation
ADHD 中的阿尔法振荡和工作记忆缺陷:多模态成像研究
  • 批准号:
    10808640
  • 财政年份:
    2023
  • 资助金额:
    $ 54.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了