Survival Threshold for Collective Plasma Oscillations

集体等离子体振荡的生存阈值

基本信息

  • 批准号:
    2349981
  • 负责人:
  • 金额:
    $ 39.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

The main objective of this project is to investigate questions about the final states of matter consisting of a sufficiently large number of interacting particles such as plasmas in plasma physics and condensates in quantum mechanics. The research will advance the understanding of turbulence in plasma physics and quantum mechanics, provide foundational mathematics to tackle unsolved problems in physics, and push the boundaries of current mathematical techniques. The research will contribute new techniques to the theory of partial differential equations, mathematical physics, dynamical systems, and applied mathematics. The project includes activities aimed at training graduate students and young researchers.The project will prove longstanding conjectures concerning the large time behavior of solutions to the mathematical mean field models that are used in plasma physics and quantum mechanics. The primary mathematical models under investigation include the relativistic Vlasov-Maxwell system and the Hartree equations used to model the nonlinear collective effects of infinitely many interacting particles. The research will rigorously validate nonlinear physical phenomena including plasma oscillations, phase transition, phase mixing, Landau damping, and the formation of coherent structures. The scattering theory as well as the formation of periodic structures for the Vlasov and Hartree equations near nontrivial translation-invariant equilibria will be established. The work of the project involves mathematical techniques from spectral theory, resolvent analysis, Fourier analysis, dispersive PDEs, probability, and statistical physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目标是研究由足够多的相互作用粒子组成的物质的最终状态问题,例如等离子体物理学中的等离子体和量子力学中的凝聚体。这项研究将推进对等离子体物理学和量子力学中湍流的理解,为解决物理学中未解决的问题提供基础数学,并推动当前数学技术的边界。该研究将为偏微分方程理论、数学物理、动力系统和应用数学提供新的技术。该项目包括旨在培养研究生和年轻研究人员的活动。该项目将证明关于等离子体物理学和量子力学中使用的数学平均场模型的解的大时间行为的长期认识。研究中的主要数学模型包括用于模拟无限多个相互作用粒子的非线性集体效应的相对论性弗拉索夫-麦克斯韦系统和哈特里方程。该研究将严格验证非线性物理现象,包括等离子体振荡,相变,相混合,朗道阻尼和相干结构的形成。散射理论以及形成的周期性结构的弗拉索夫和哈特里方程附近的非平凡的双折射不变的平衡将被建立。该项目的工作涉及光谱理论、预解式分析、傅立叶分析、色散偏微分方程、概率和统计物理等数学技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Toan Nguyen其他文献

Fault-proneモジュール予測に対するコメント記述量の効果に関する考察
考虑评论量对易错模块预测的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toan Nguyen;Hideyuki Jitsumoto;Naoya Maruyama;Tatsuo Nomura;Toshio Endo;Satoshi Matsuoka;阿萬裕久
  • 通讯作者:
    阿萬裕久
‘Assessment of an artificial intelligence aid for the detection of appendicular skeletal fractures in children and young adults by senior and junior radiologists’: reply to Sammer et al.
“高级和初级放射科医生对人工智能辅助检测儿童和年轻人附肢骨骼骨折的评估”:对 Sammer 等人的答复。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Toan Nguyen;Richard Maarek;A. Hermann;Amina Kammoun;Antoine Marchi;Mohamed R. Khelifi;Mégane Collin;Alienor Jaillard;A. Kompel;D. Hayashi;A. Guermazi;H. Ducou le Pointe
  • 通讯作者:
    H. Ducou le Pointe
Kid on the phone! Toward automatic detection of children on mobile devices
  • DOI:
    10.1016/j.cose.2019.04.001
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Toan Nguyen;Roy, Aditi;Memon, Nasir
  • 通讯作者:
    Memon, Nasir
High performance for bone age estimation with an artificial intelligence solution.
通过人工智能解决方案进行高性能骨龄估计。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Toan Nguyen;A. Hermann;J. Ventre;Alexis Ducarouge;Aloïs Pourchot;Vincent Marty;N. Regnard;A. Guermazi
  • 通讯作者:
    A. Guermazi
Is sex ratio a valid distribution factor in a collective model?
性别比例在集体模型中是一个有效的分配因素吗?
  • DOI:
    10.1016/j.labeco.2024.102647
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Yujung Hwang;Toan Nguyen
  • 通讯作者:
    Toan Nguyen

Toan Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Toan Nguyen', 18)}}的其他基金

Mathematical Questions in Kinetic Theory
动力学理论中的数学问题
  • 批准号:
    2054726
  • 财政年份:
    2021
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Standard Grant
The Inviscid Limit and Large Time Behavior of Fluid Flows
流体流动的无粘极限和长时间行为
  • 批准号:
    1764119
  • 财政年份:
    2018
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Continuing Grant
Dynamics of Wave Structures in Fluid Dynamics, Oscillatory Media, and Plasma Physics
流体动力学、振荡介质和等离子体物理中的波结构动力学
  • 批准号:
    1405728
  • 财政年份:
    2014
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Standard Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
  • 批准号:
    1338643
  • 财政年份:
    2013
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Standard Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
  • 批准号:
    1108821
  • 财政年份:
    2011
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Standard Grant

相似海外基金

FuSe-TG: Reconfigurable Threshold Logic via Flexible Thin Film Electronics: A Pathway to Semiconductor Workforce Development
FuSe-TG:通过柔性薄膜电子器件的可重构阈值逻辑:半导体劳动力发展的途径
  • 批准号:
    2235385
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Standard Grant
Learning of education Threshold Concepts through educational development
通过教育发展学习教育阈值概念
  • 批准号:
    23K12795
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Upper airway collapsibility, loop gain and arousal threshold: an integrative therapeutic approach to obstructive sleep apnea
上气道塌陷、循环增益和唤醒阈值:阻塞性睡眠呼吸暂停的综合治疗方法
  • 批准号:
    10859275
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
Examining injectable buprenorphine implementation strategies in low-threshold and primary care settings
检查低阈值和初级保健环境中注射丁丙诺啡的实施策略
  • 批准号:
    10591424
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
Super-reducing threshold intensity of TTA photon upconversion by isotope exchange and precise threshold measurements
通过同位素交换和精确阈值测量超降低 TTA 光子上转换的阈值强度
  • 批准号:
    23K04701
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rigid Planar Organic Molecules for Low Threshold Organic Solid-State Lasers
用于低阈值有机固态激光器的刚性平面有机分子
  • 批准号:
    23KK0099
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Modelling and testing threshold effects with mixed frequency data
使用混合频率数据建模和测试阈值效应
  • 批准号:
    23K17555
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study on the threshold and the structure of solutions to chemotaxis systems with logarithmic sensitivity functions
对数敏感函数趋化系统解的阈值和结构研究
  • 批准号:
    23K03190
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Organic semiconductor lasers aimed at low lasing threshold
有机半导体激光器瞄准低激光阈值
  • 批准号:
    23H05406
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Tamper-Resistant Computing Platform Exploiting Near-Threshold Voltage Operation
利用近阈值电压运行的防篡改计算平台
  • 批准号:
    23H03363
  • 财政年份:
    2023
  • 资助金额:
    $ 39.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了