Topological Electronic Structure in Strong Spin-Orbit Coupled Materials

强自旋轨道耦合材料中的拓扑电子结构

基本信息

  • 批准号:
    1006492
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Technical Abstract: Discovering new phases of matter with useful electronic or magnetic properties is an important goal in modern physics. In the past few years, research has uncovered a new phase of quantum matter dubbed "Topological Insulators". They exhibit quantum Hall-like effects without magnetic field and can be operated at room temperatures. In a topological insulator, these effects lead to surface states that have unusual spin textures with a linear relationship between energy and momentum (Dirac dispersion). Such states have been predicted to give rise to dissipationless (energy saving) spin currents, quantum entanglements and novel macroscopic behavior that obeys axionic electrodynamics rather than Maxwell's equations and can potentially realize exotic particles that can be used for fault tolerant quantum computing. Angle-resolved photoemission spectroscopy will be used to study the quantum properties of several novel topological insulators under this project. Students working on this project will develop expertise in vacuum and nano-technology, material characterization methodologies, and advanced x-ray optics and spin- and photon-polarization resolved electronic spectroscopy techniques preparing them for future scientific careers in industry, academia or government laboratories. Outreach programs "Quantum Materials" and "Nobel-Science-This-Year" expositions and their integration with Princeton's "The Leadership Alliance Program: dedicated to increase diversity in academia" will involve many minority and young students and facilitate their entry into the world of modern science.Non-Technical Abstract: In an ordinary insulator, such as diamond, the occupied electronic levels are separated from unoccupied levels by a large energy barrier known as an energy gap. The energy gap prevents current flow when an electric field is applied. Recent research has uncovered a new class of insulators, called topological insulators, in which electrons can bypass the energy gap by moving out to the surfaces of the insulator. The energy vs. velocity behavior of these unusual electrons moving on the surface is light-like. They exhibit many unusual quantum properties which can be harnessed to improve spin-based electronics, novel forms of quantum computing and energy-efficient devices. This project will focus on studying the details of the novel quantum behaviors of electrons moving on the surface which will in turn not only lead to better understanding of the mechanism for doing so but also likely discover new pathways to applications. Students working on this project will develop expertise in vacuum and nano-technology, material characterization methodologies, and advanced x-ray optics and electronic spectroscopy techniques preparing them for scientific careers in industry, academia or government laboratories. Outreach programs "Quantum Materials" and "Nobel-Science-This-Year" expositions and their integration with Princeton's "The Leadership Alliance Program: dedicated to increase diversity in academia" will involve many minority and young students and facilitate their entry into the world of modern science.
技术摘要:发现具有有用的电子或磁性的物质的新相是现代物理学的一个重要目标。在过去的几年里,研究发现了量子物质的一个新阶段,称为“拓扑绝缘体”。它们在没有磁场的情况下表现出量子霍尔效应,并且可以在室温下工作。在拓扑绝缘体中,这些效应导致表面态具有不寻常的自旋纹理,能量和动量之间具有线性关系(狄拉克色散)。这种状态已经被预测会产生无耗散(节能)的自旋电流,量子纠缠和新的宏观行为,服从公理电动力学,而不是麦克斯韦方程,并可能实现奇异粒子,可用于容错量子计算。本计画将利用角分辨光电子能谱研究数种新型拓扑绝缘体的量子特性。从事该项目的学生将发展真空和纳米技术,材料表征方法,先进的X射线光学和自旋和光子偏振分辨电子光谱技术方面的专业知识,为他们未来在工业,学术界或政府实验室的科学事业做好准备。外展计划“量子材料”和“诺贝尔科学-今年”博览会及其与普林斯顿大学的“领导联盟计划:致力于增加学术界的多样性”的整合将涉及许多少数民族和年轻学生,并促进他们进入现代科学的世界。在普通的绝缘体中,例如金刚石,被占据的电子能级与未被占据的能级被称为能隙的大能量势垒分开。当施加电场时,能隙阻止电流流动。最近的研究发现了一类新的绝缘体,称为拓扑绝缘体,其中电子可以通过移动到绝缘体的表面来绕过能隙。 这些不寻常的电子在表面上运动的能量与速度的关系与光相似。它们表现出许多不寻常的量子特性,可以用来改善基于自旋的电子学,量子计算的新形式和节能设备。该项目将专注于研究电子在表面上移动的新颖量子行为的细节,这不仅可以更好地理解这样做的机制,还可能发现新的应用途径。从事该项目的学生将发展真空和纳米技术,材料表征方法以及先进的X射线光学和电子光谱技术方面的专业知识,为他们在工业,学术界或政府实验室的科学事业做好准备。“量子材料”和“诺贝尔科学-本年度”博览会及其与普林斯顿大学的“领导联盟计划:致力于增加学术界的多样性”的整合将涉及许多少数民族和年轻学生,并促进他们进入现代科学的世界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

M. Zahid Hasan其他文献

Electron-phonon coupling in the charge density wave state of CsV3Sb5
CsV3Sb5 电荷密度波态的电子声子耦合
  • DOI:
    10.1103/physrevb.105.l140501
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yaofeng Xie;Yongkai Li;Philippe Bourges;Alex;re Ivanov;Zijin Ye;Jia-Xin Yin;M. Zahid Hasan;Aiyun Luo;Yugui Yao;Zhiwei Wang;Gang Xu;Pengcheng Dai
  • 通讯作者:
    Pengcheng Dai
Weyl, Dirac and high-fold chiral fermions in topological quantum matter
拓扑量子物质中的外尔、狄拉克和高倍手征费米子
  • DOI:
    10.1038/s41578-021-00301-3
  • 发表时间:
    2021-04-26
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    M. Zahid Hasan;Guoqing Chang;Ilya Belopolski;Guang Bian;Su-Yang Xu;Jia-Xin Yin
  • 通讯作者:
    Jia-Xin Yin
Tunable superconductivity coexisting with the anomalous Hall effect in a transition metal dichalcogenide
在过渡金属二硫属化物中与反常霍尔效应共存的可调超导性
  • DOI:
    10.1038/s41467-025-56919-2
  • 发表时间:
    2025-03-10
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Md Shafayat Hossain;Qi Zhang;David Graf;Mikel Iraola;Tobias Müller;Sougata Mardanya;Yi-Hsin Tu;Zhuangchai Lai;Martina O. Soldini;Siyuan Li;Yao Yao;Yu-Xiao Jiang;Zi-Jia Cheng;Maksim Litskevich;Brian Casas;Tyler A. Cochran;Xian P. Yang;Byunghoon Kim;Kenji Watanabe;Takashi Taniguchi;Sugata Chowdhury;Arun Bansil;Hua Zhang;Tay-Rong Chang;Mark H. Fischer;Titus Neupert;Luis Balicas;M. Zahid Hasan
  • 通讯作者:
    M. Zahid Hasan
Magnetic-tunnelling-induced Weyl node annihilation in TaP
  • DOI:
    doi:10.1038/nphys4183
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Cheng-Long Zhang;Su-Yang Xu;C. M. Wang;Ziquan Lin;Z. Z. Du;Cheng Guo;Chi-Cheng Lee;Hong Lu;Yiyang Feng;Shin-Ming Huang;Guoqing Chang;Chuang-Han Hsu;Haiwen Liu;Shin Lin;Liang Li;Chi Zhang;Jinglei Zhang;Xin-Cheng Xie;Titus Neupert;M. Zahid Hasan;Haizhou Lu;
  • 通讯作者:
Broken symmetries associated with a Kagome chiral charge order
与 Kagome 手性电荷序相关的破缺对称性
  • DOI:
    10.1038/s41467-025-58262-y
  • 发表时间:
    2025-04-22
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Zi-Jia Cheng;Md Shafayat Hossain;Qi Zhang;Sen Shao;Jinjin Liu;Yilin Zhao;Mohammad Yahyavi;Yu-Xiao Jiang;Jia-Xin Yin;Xian Yang;Yongkai Li;Tyler A. Cochran;Maksim Litskevich;Byunghoon Kim;Junyi Zhang;Yugui Yao;Luis Balicas;Zhiwei Wang;Guoqing Chang;M. Zahid Hasan
  • 通讯作者:
    M. Zahid Hasan

M. Zahid Hasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('M. Zahid Hasan', 18)}}的其他基金

Electronic Structure of Unconventional Spin-Orbit Materials
非常规自旋轨道材料的电子结构
  • 批准号:
    1507585
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似海外基金

Theoretical study of novel topological electronic properties arising from the structure and molecular degree of freedom of high-dimensional molecular crystals
高维分子晶体的结构和分子自由度引起的新型拓扑电子特性的理论研究
  • 批准号:
    23K03322
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
  • 批准号:
    2219610
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Investigations of magnetic and topological systems using electronic structure and muon-spin spectroscopy
使用电子结构和μ子自旋光谱研究磁性和拓扑系统
  • 批准号:
    2748010
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
Construction of soft x-ray electronic structure station and elucidation of electronic structure of topological superconductors
软X射线电子结构站建设及拓扑超导体电子结构解析
  • 批准号:
    22H03874
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Verification of magnetic/electronic/spin structure correspondence in topological magnets
拓扑磁体中磁/电子/自旋结构对应的验证
  • 批准号:
    22H01943
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel electronic structure stimulated in surface triangular lattice of strongly correlated topological materials
强相关拓扑材料表面三角晶格中激发的新型电子结构
  • 批准号:
    20K03859
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realization of novel 2D topological insulator materials and its electronic structure analysis by spin-resolved ARPES
自旋分辨ARPES实现新型二维拓扑绝缘体材料及其电子结构分析
  • 批准号:
    18H01821
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Correlation of geometric and electronic structure at surfaces and interfaces of adsorbate covered topological insulators
吸附质覆盖的拓扑绝缘体表面和界面处几何结构和电子结构的相关性
  • 批准号:
    237598744
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Priority Programmes
Theoretical calculation of the electronic structure of topological insulators
拓扑绝缘体电子结构的理论计算
  • 批准号:
    24540328
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fabrication and electronic-structure analysis of topological nano-ribbon
拓扑纳米带的制备及电子结构分析
  • 批准号:
    24654096
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了