Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
基本信息
- 批准号:2219610
- 负责人:
- 金额:$ 47.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Remarkable properties of topological materials, such as ability to conduct electric current without dissipation, were first discovered four decades ago, but only under extreme experimental conditions of nearly absolute zero temperature and high magnetic field. It was subsequently recognized that such a remarkable transport property is derived from material “topology”. This recognition has launched the era of topological quantum materials with the potential to realize the remarkable properties at a much higher temperature without an external magnetic field. There are, however, several technical challenges that need to be overcome before bringing such technical promises to reality. This research program is set up to address some of the most important materials science issues and to lay the foundations for tailoring the new class of magnetic topological insulators using multi-layered heterostructures. Educationally, the PI will create a new course beyond the current curriculum to provide students with academic training so they can be well-prepared to enter this new exciting research field of topological quantum materials. Technical Abstract: In magnetic topological insulators (MTI), the incorporation of magnetism breaks the time reversal symmetry and creates a Dirac mass gap in the otherwise massless surface states of topological insulators (TI). In MTI remarkable transport properties such as quantum anomalous Hall effect (QAHE) have been predicted and observed in extrinsic MTI materials (i.e. TI with magnetic dopants). However, due to the dopant disorder effect, the QAHE can be observed only at a very low temperature (~ 30 mK). The newly emerged intrinsic MTI materials such as MnBi2Te4 (MBT) offers an alternative platform by incorporating a stoichiometric magnetic layer (MnTe) into the center of Bi2Te3. An ideal intrinsic MTI would be free of dopant disorder, thus offering the possibility to observe QAHE up to the magnetic transition temperature. Already several groups have reported observation of QAHE at ~ 1K, significantly higher than that in extrinsic MTI, albeit still smaller than the magnetic transition temperature (~ 20K). These earlier works have stimulated intensive worldwide research work. However, several outstanding issues remain unresolved. Meanwhile, efforts have been devoted to designing new magnetic topological quantum materials beyond simple MBT and related compounds. This project combines molecular beam epitaxy with in-situ scanning probe microscopy to study artificially engineered MTI and MTI/TI heterostructures. The object is three-fold: (a) controlling the formation of MTI and MTI/TI heterostructure layer-by-layer with ultimate control in defect density and chemical potential; (b) resolving key outstanding issues that challenge the current understanding of the connection between the topological surface states and the magnetic textures; (c) determining key designing parameters for artificial engineering of topological properties using MTI/TI superlattices. Educationally, the graduate students trained in this research program gain a broad scientific perspective. Through the design of a special course in topological quantum materials, the PI will significantly broaden graduate/undergraduate education in contemporary condensed matter physic. The program also broadens the participation of underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:拓扑材料的显着特性,例如传导电流而不耗散的能力,在四十年前首次被发现,但仅在接近绝对零度温度和高磁场的极端实验条件下。后来人们认识到,这种显着的传输性能是来自材料的“拓扑结构”。这一认识开启了拓扑量子材料的时代,它有可能在没有外部磁场的情况下在更高的温度下实现显着的特性。 然而,在将这些技术承诺变为现实之前,需要克服一些技术挑战。 该研究计划旨在解决一些最重要的材料科学问题,并为使用多层异质结构定制新型磁性拓扑绝缘体奠定基础。 在教育方面,PI将在现有课程之外创建一门新课程,为学生提供学术培训,以便他们为进入拓扑量子材料这一令人兴奋的新研究领域做好充分准备。 技术摘要:在磁性拓扑绝缘体(MTI)中,磁性的引入打破了时间反演对称性,并在拓扑绝缘体(TI)的无质量表面态中产生了狄拉克质量隙。 在MTI显着的输运性质,如量子反常霍尔效应(QAHE)已被预测和观察到的非本征MTI材料(即TI与磁性掺杂剂)。然而,由于掺杂剂的无序效应,QAHE只能在非常低的温度(~ 30 mK)下观察到。新出现的本征MTI材料如MnBi 2 Te 4(MBT)通过将化学计量磁性层(MnTe)并入Bi 2 Te 3的中心提供了替代平台。 一个理想的本征MTI将是免费的掺杂无序,从而提供了可能性,观察QAHE的磁转变温度。 已经有几个研究小组报道了在~ 1 K下观察到QAHE,明显高于外在MTI,尽管仍然小于磁转变温度(~ 20 K)。 这些早期的工作刺激了世界范围内的密集研究工作。 然而,若干未决问题仍未解决。 与此同时,人们致力于设计新的磁性拓扑量子材料,而不仅仅是简单的MBT及其相关化合物。 本计画结合分子束磊晶与原位扫描探针显微镜技术,研究人工制造的MTI与MTI/TI异质结构。 目标有三个方面:(a)通过最终控制缺陷密度和化学势,逐层控制MTI和MTI/TI异质结构的形成;(B)解决挑战当前对拓扑表面状态和磁性织构之间的联系的理解的关键的突出问题;(c)确定使用MTI/TI超晶格的拓扑性质的人工工程的关键设计参数。 在教育上,在这个研究计划中培养的研究生获得了广泛的科学视野。 通过拓扑量子材料的特殊课程的设计,PI将显着拓宽当代凝聚态材料的研究生/本科教育。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chih-Kang Shih其他文献
Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
- DOI:
DOI: 10.1126/sciadv.abi6339 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System
全参数空间中二维等离子体激子耦合的调谐:极化非厄米系统
- DOI:
10.1021/acs.nanolett.1c00198 - 发表时间:
2021 - 期刊:
- 影响因子:10.8
- 作者:
Yungang Sang;Chun-Yuan Wang;Soniya S. Raja;Chang-Wei Cheng;Chiao-Tzu Huang;Chun-An Chen;Xin-Quan Zhang;Hyeyoung Ahn;Chih-Kang Shih;Yi-Hsien Lee;Jinwei Shi;Shangjr Gwo - 通讯作者:
Shangjr Gwo
Excitons in semiconductor moiré superlattices
半导体莫尔超晶格中的激子
- DOI:
10.1038/s41565-021-01068-y - 发表时间:
2022-03-14 - 期刊:
- 影响因子:34.900
- 作者:
Di Huang;Junho Choi;Chih-Kang Shih;Xiaoqin Li - 通讯作者:
Xiaoqin Li
Robust supermoiré pattern in large-angle single-twist bilayers
大角度单扭曲双层膜中的稳健超级莫尔图案
- DOI:
10.1038/s41567-025-02914-9 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:18.400
- 作者:
Yanxing Li;Chuqiao Shi;Fan Zhang;Xiaohui Liu;Yuan Xue;Viet-Anh Ha;Qiang Gao;Chengye Dong;Yu-Chuan Lin;Luke N. Holtzman;Nicolás Morales-Durán;Hyunsue Kim;Yi Jiang;Madisen Holbrook;James Hone;Katayun Barmak;Joshua A. Robinson;Xiaoqin Li;Feliciano Giustino;Eslam Khalaf;Yimo Han;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Experimental signature of layer skyrmions and implications for band topology in twisted WSe2 bilayers
层状斯格明子的实验特征及其对扭曲 WSe2 双层膜能带拓扑的影响
- DOI:
10.1038/s41567-025-02876-y - 发表时间:
2025-05-01 - 期刊:
- 影响因子:18.400
- 作者:
Fan Zhang;Nicolás Morales-Durán;Yanxing Li;Wang Yao;Jung-Jung Su;Yu-Chuan Lin;Chengye Dong;Xiaohui Liu;Fu-Xiang Rikudo Chen;Hyunsue Kim;Kenji Watanabe;Takashi Taniguchi;Xiaoqin Li;Joshua A. Robinson;Allan H. Macdonald;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Chih-Kang Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chih-Kang Shih', 18)}}的其他基金
Tailoring electronic and photonic properties of van der Waals semiconductor heterostructures
定制范德华半导体异质结构的电子和光子特性
- 批准号:
1808751 - 财政年份:2018
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
Manipulating 2D Superconductivity through atomic scale control of boundary conditions
通过边界条件的原子尺度控制来操纵二维超导
- 批准号:
1506678 - 财政年份:2015
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
Advanced Accelerating Structures Based on Metamaterials
基于超材料的先进加速结构
- 批准号:
1415547 - 财政年份:2014
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
FRG: Quantum Tuning of Superconducting, Plasmonic, and Chemical Properties of Metallic Nanostructures
FRG:金属纳米结构的超导、等离子体和化学性质的量子调谐
- 批准号:
0906025 - 财政年份:2009
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
IGERT: Atomic and Molecular Imaging of Interfaces/Defects in Electronic, Spintronic, and Organic/Inorganic Materials
IGERT:电子、自旋电子和有机/无机材料中界面/缺陷的原子和分子成像
- 批准号:
0549417 - 财政年份:2006
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
FRG: Quantum Engineering of Metallic and Magnetic Nanostructures
FRG:金属和磁性纳米结构的量子工程
- 批准号:
0606485 - 财政年份:2006
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
FRG-Quantum Engineering of Metallic and Magnetic Nanostructures
FRG-金属和磁性纳米结构的量子工程
- 批准号:
0306239 - 财政年份:2003
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
NIRT: FRG: Collective and Quasiparticle Properties of Nanocrystals and Nano-Arrays
NIRT:FRG:纳米晶体和纳米阵列的集体和准粒子特性
- 批准号:
0210383 - 财政年份:2002
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
FRG: Quantum Engineering of Metallic Nanostructures
FRG:金属纳米结构的量子工程
- 批准号:
0071893 - 财政年份:2000
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
Cross-Sectional Scanning Probe Microscopy/Spectroscopy of Semiconductor Heterostructures
半导体异质结构的横截面扫描探针显微镜/光谱学
- 批准号:
9402938 - 财政年份:1994
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
- 批准号:11805087
- 批准年份:2018
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing the Electronic Structure and Chemical Bonding of Cryogenically-Cooled Boron and Metal-Boride Nanoclusters
探究低温冷却硼和金属硼化物纳米团簇的电子结构和化学键合
- 批准号:
2403841 - 财政年份:2024
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
Proposal to resurrect femtosecond laser labs for probing electronic materials
复兴飞秒激光实验室以探测电子材料的提案
- 批准号:
RTI-2023-00018 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Research Tools and Instruments
CAREER: Probing and Manipulating Electronic and Spin Degrees of Freedom in Paramagnetic Single Molecule Circuits
职业:探测和操纵顺磁单分子电路中的电子和自旋自由度
- 批准号:
2145276 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
Probing Phenotype-Genotype Relations After Whole Genome Sequencing in Patients with Atrial Fibrillation
心房颤动患者全基因组测序后探索表型-基因型关系
- 批准号:
10478952 - 财政年份:2021
- 资助金额:
$ 47.28万 - 项目类别:
Probing electronic symmetry breaking in strain-tuned quantum matter
探测应变调谐量子物质中的电子对称性破缺
- 批准号:
2138167 - 财政年份:2021
- 资助金额:
$ 47.28万 - 项目类别:
Fellowship Award
Probing Phenotype-Genotype Relations After Whole Genome Sequencing in Patients with Atrial Fibrillation
心房颤动患者全基因组测序后探索表型-基因型关系
- 批准号:
10686188 - 财政年份:2021
- 资助金额:
$ 47.28万 - 项目类别:
Probing and Controlling Electronic Dynamics in Matter with Atomic Spatiotemporal Resolution
用原子时空分辨率探测和控制物质中的电子动力学
- 批准号:
2110633 - 财政年份:2021
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
Probing Phenotype-Genotype Relations After Whole Genome Sequencing in Patients with Atrial Fibrillation
心房颤动患者全基因组测序后探索表型-基因型关系
- 批准号:
10296013 - 财政年份:2021
- 资助金额:
$ 47.28万 - 项目类别:
Probing the changes in microscopic electronic structures across the magnetic transitions by photoemission dichroism under a magnetic field
通过磁场下的光发射二色性探测磁跃迁过程中微观电子结构的变化
- 批准号:
20K20900 - 财政年份:2020
- 资助金额:
$ 47.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Probing Fundamental Magneto-Electronic Properties of Two-Dimensional Metal Halides
探测二维金属卤化物的基本磁电性质
- 批准号:
2004420 - 财政年份:2020
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant