Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
基本信息
- 批准号:2219610
- 负责人:
- 金额:$ 47.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Remarkable properties of topological materials, such as ability to conduct electric current without dissipation, were first discovered four decades ago, but only under extreme experimental conditions of nearly absolute zero temperature and high magnetic field. It was subsequently recognized that such a remarkable transport property is derived from material “topology”. This recognition has launched the era of topological quantum materials with the potential to realize the remarkable properties at a much higher temperature without an external magnetic field. There are, however, several technical challenges that need to be overcome before bringing such technical promises to reality. This research program is set up to address some of the most important materials science issues and to lay the foundations for tailoring the new class of magnetic topological insulators using multi-layered heterostructures. Educationally, the PI will create a new course beyond the current curriculum to provide students with academic training so they can be well-prepared to enter this new exciting research field of topological quantum materials. Technical Abstract: In magnetic topological insulators (MTI), the incorporation of magnetism breaks the time reversal symmetry and creates a Dirac mass gap in the otherwise massless surface states of topological insulators (TI). In MTI remarkable transport properties such as quantum anomalous Hall effect (QAHE) have been predicted and observed in extrinsic MTI materials (i.e. TI with magnetic dopants). However, due to the dopant disorder effect, the QAHE can be observed only at a very low temperature (~ 30 mK). The newly emerged intrinsic MTI materials such as MnBi2Te4 (MBT) offers an alternative platform by incorporating a stoichiometric magnetic layer (MnTe) into the center of Bi2Te3. An ideal intrinsic MTI would be free of dopant disorder, thus offering the possibility to observe QAHE up to the magnetic transition temperature. Already several groups have reported observation of QAHE at ~ 1K, significantly higher than that in extrinsic MTI, albeit still smaller than the magnetic transition temperature (~ 20K). These earlier works have stimulated intensive worldwide research work. However, several outstanding issues remain unresolved. Meanwhile, efforts have been devoted to designing new magnetic topological quantum materials beyond simple MBT and related compounds. This project combines molecular beam epitaxy with in-situ scanning probe microscopy to study artificially engineered MTI and MTI/TI heterostructures. The object is three-fold: (a) controlling the formation of MTI and MTI/TI heterostructure layer-by-layer with ultimate control in defect density and chemical potential; (b) resolving key outstanding issues that challenge the current understanding of the connection between the topological surface states and the magnetic textures; (c) determining key designing parameters for artificial engineering of topological properties using MTI/TI superlattices. Educationally, the graduate students trained in this research program gain a broad scientific perspective. Through the design of a special course in topological quantum materials, the PI will significantly broaden graduate/undergraduate education in contemporary condensed matter physic. The program also broadens the participation of underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:拓扑材料的显着特性,例如在四十年前发现无耗散电流的能力,但仅在几乎绝对的零温度和高磁场的极端实验条件下发现。随后,人们认识到这种出色的运输特性源自物质“拓扑”。这种识别已经推出了拓扑量子材料的时代,有可能在没有外部磁场的情况下在更高的温度下实现出色的特性。但是,在将这种技术承诺带入现实之前,需要克服一些技术挑战。该研究计划旨在解决一些最重要的材料科学问题,并为使用多层异质结构定制新的磁性拓扑绝缘子的基础。在教育上,PI将创建一个新课程,而不是当前目前的学术培训,以便为学生提供充分的准备,以便进入这个新的令人兴奋的拓扑量子材料研究领域。技术摘要:在磁性拓扑绝缘子(MTI)中,磁性的编码破坏了时间逆转对称性,并在原本无质量的拓扑绝缘子(TI)的无质量表面状态下产生了狄拉克质量间隙。在MTI出色的转运特性中,如量子异常效应(QAHE)的预测并在外部MTI材料(即带有磁性掺杂剂的Ti)中观察到。但是,由于掺杂症的效果,只能在非常低的温度(〜30 mk)下观察到QAHE。新出现的内在MTI材料(例如MNBI2TE4(MBT))通过将化学计量磁性层(MNTE)纳入BI2TE3中心,提供了替代平台。理想的内在MTI将没有掺杂症,这提供了观察到Qahe到磁过渡温度的可能性。已经有几个小组报告了〜1k的Qahe的观察,显着高于外部MTI,尽管仍然小于磁过渡温度(〜20K)。这些早期的作品刺激了全球研究工作。但是,几个未解决的问题仍未解决。同时,努力已致力于设计新的磁性拓扑量子材料,而不是简单的MBT和相关化合物。该项目将分子束外延与原位扫描探针显微镜结合在一起,以研究人工设计的MTI和MTI/Ti异质结构一层层次,并在缺陷密度和化学潜力方面具有最终的控制; (b)解决关键问题,以挑战当前对拓扑表面状态与磁纹理之间联系的理解; (c)确定使用MTI/Ti超晶格的拓扑特性的人工工程的关键设计参数。在教育上,接受了该研究计划的培训的研究生获得了广泛的科学观点。通过设计拓扑量子材料的特殊课程,PI将显着扩大当代冷凝物质物理学的研究生/本科教育。该计划还扩大了代表性不足的小组的参与。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估诚实的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chih-Kang Shih其他文献
Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System
全参数空间中二维等离子体激子耦合的调谐:极化非厄米系统
- DOI:
10.1021/acs.nanolett.1c00198 - 发表时间:
2021 - 期刊:
- 影响因子:10.8
- 作者:
Yungang Sang;Chun-Yuan Wang;Soniya S. Raja;Chang-Wei Cheng;Chiao-Tzu Huang;Chun-An Chen;Xin-Quan Zhang;Hyeyoung Ahn;Chih-Kang Shih;Yi-Hsien Lee;Jinwei Shi;Shangjr Gwo - 通讯作者:
Shangjr Gwo
Chih-Kang Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chih-Kang Shih', 18)}}的其他基金
Tailoring electronic and photonic properties of van der Waals semiconductor heterostructures
定制范德华半导体异质结构的电子和光子特性
- 批准号:
1808751 - 财政年份:2018
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
Manipulating 2D Superconductivity through atomic scale control of boundary conditions
通过边界条件的原子尺度控制来操纵二维超导
- 批准号:
1506678 - 财政年份:2015
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
Advanced Accelerating Structures Based on Metamaterials
基于超材料的先进加速结构
- 批准号:
1415547 - 财政年份:2014
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
FRG: Quantum Tuning of Superconducting, Plasmonic, and Chemical Properties of Metallic Nanostructures
FRG:金属纳米结构的超导、等离子体和化学性质的量子调谐
- 批准号:
0906025 - 财政年份:2009
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
IGERT: Atomic and Molecular Imaging of Interfaces/Defects in Electronic, Spintronic, and Organic/Inorganic Materials
IGERT:电子、自旋电子和有机/无机材料中界面/缺陷的原子和分子成像
- 批准号:
0549417 - 财政年份:2006
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
FRG: Quantum Engineering of Metallic and Magnetic Nanostructures
FRG:金属和磁性纳米结构的量子工程
- 批准号:
0606485 - 财政年份:2006
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
FRG-Quantum Engineering of Metallic and Magnetic Nanostructures
FRG-金属和磁性纳米结构的量子工程
- 批准号:
0306239 - 财政年份:2003
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
NIRT: FRG: Collective and Quasiparticle Properties of Nanocrystals and Nano-Arrays
NIRT:FRG:纳米晶体和纳米阵列的集体和准粒子特性
- 批准号:
0210383 - 财政年份:2002
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
FRG: Quantum Engineering of Metallic Nanostructures
FRG:金属纳米结构的量子工程
- 批准号:
0071893 - 财政年份:2000
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
Cross-Sectional Scanning Probe Microscopy/Spectroscopy of Semiconductor Heterostructures
半导体异质结构的横截面扫描探针显微镜/光谱学
- 批准号:
9402938 - 财政年份:1994
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
相似国自然基金
基于4f电子的二维稀土金属卤化物多铁性的实验探测及调控研究
- 批准号:12304131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水/二氧化钛界面相互作用的角分辨光电子谱学探测
- 批准号:22302188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于等离激元热电子捕获的TMDs位置灵敏探测器研究
- 批准号:12304350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
结构表面等离激元与拓扑表面态电子相互作用的泵浦探测研究
- 批准号:12374223
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
面向红外探测器件的半导体/关联电子材料异质结的构筑与测量
- 批准号:62375021
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Probing the Electronic Structure and Chemical Bonding of Cryogenically-Cooled Boron and Metal-Boride Nanoclusters
探究低温冷却硼和金属硼化物纳米团簇的电子结构和化学键合
- 批准号:
2403841 - 财政年份:2024
- 资助金额:
$ 47.28万 - 项目类别:
Standard Grant
Proposal to resurrect femtosecond laser labs for probing electronic materials
复兴飞秒激光实验室以探测电子材料的提案
- 批准号:
RTI-2023-00018 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Research Tools and Instruments
CAREER: Probing and Manipulating Electronic and Spin Degrees of Freedom in Paramagnetic Single Molecule Circuits
职业:探测和操纵顺磁单分子电路中的电子和自旋自由度
- 批准号:
2145276 - 财政年份:2022
- 资助金额:
$ 47.28万 - 项目类别:
Continuing Grant
Probing electronic symmetry breaking in strain-tuned quantum matter
探测应变调谐量子物质中的电子对称性破缺
- 批准号:
2138167 - 财政年份:2021
- 资助金额:
$ 47.28万 - 项目类别:
Fellowship Award
Probing Phenotype-Genotype Relations After Whole Genome Sequencing in Patients with Atrial Fibrillation
心房颤动患者全基因组测序后探索表型-基因型关系
- 批准号:
10478952 - 财政年份:2021
- 资助金额:
$ 47.28万 - 项目类别: