Noncommutative algebraic invariants in topology
拓扑中的非交换代数不变量
基本信息
- 批准号:1006908
- 负责人:
- 金额:$ 14.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator of the project is Tim D. Cochran of William Marsh Rice University in Houston Texas. The broad goal of the project is to find applications of methods of noncommutative algebra to problems in topology, group theory and number theory. Over the last 12 years the PI and collaborators have developed a vast theory of so-called higher-order Alexander modules, linking forms and signatures. These can be associated to knots, links, 3-manifolds, spaces, groups or even surface homeomorphisms. The project will apply these techniques to important open problems in topology and group theory. Specific goals are: to find structure in the smooth knot and link concordance groups, in particular to find structure in the subgroup of smooth concordance classes of topologically slice knots; to prove primary decomposition theorems for terms of the COT filtration of the knot concordance group; to find similar structures and complexity in the homology cobordism classes of hyperbolic 3-manifolds; to find a refinement of Heegaard Floer Knot Homology that better reflects the noncommutativity of the fundamental group of the knot exterior; to use similar techniques to find new elements of homology for subgroups of mapping class groups; to continue to find further relationships between homology equivalence and fundamental group and apply these results to the virtual betti number problem in 3-manifolds. The PI also will extend, to the category of pro-p groups, the foundational results of Stallings, Dwyer, and Cochran-Harvey relating group homology to derived and lower central series.This project studies mathematical aspects of the shape, or topology, of 3-dimensional objects. Shape is crucial to the design of antiviral drugs, the study of networks, search algorithms, satellite recognition of objects, the medical imaging and modeling of human organs and in the function of cellular DNA. Even though all common objects are 3-dimensional in nature, such shapes can be quite complicated. For example, the shape of a large molecule, such as a protein is quite complex, and mostly unknown, despite the fact that such knowledge is vital to the creation of antiviral drugs. How can an imaging device distinguish a tank from a house given only partial data? How can one usefully quantify the shape of a human brain given that all brains are different? The scientific study of shape requires mathematical ideas that can accurately quantify the complex non-linear behavior of such objects. Noncommutative algebra, such as in matrices where AB is not necessarily equal to BA, is necessary to model simple real-life situations. This project will develop new tools in noncommutative mathematics and apply these to specific problems concerning the shape of 3-dimensional objects.
该项目的首席研究员是Tim D。他是德克萨斯州休斯敦市威廉·马什·赖斯大学的教授。该项目的广泛目标是找到非交换代数方法在拓扑学、群论和数论问题中的应用。在过去的12年里,PI和合作者开发了一个所谓的高阶亚历山大模块的庞大理论,连接形式和签名。这些可以与结,链接,3-流形,空间,群甚至表面同胚相关联。 该项目将把这些技术应用于拓扑学和群论中的重要开放问题。具体目标是:在光滑纽结和链环协调群中寻找结构,特别是在拓扑切片纽结的光滑协调类的子群中寻找结构,证明纽结协调群的COT滤子项的准素分解定理,在双曲三维流形的同调配边类中寻找相似的结构和复杂性,在拓扑切片纽结的光滑协调类中寻找结构,在拓扑找到Heegaard Floer Knot Homology的一个改进,它更好地反映了Knot外部基本群的非交换性;使用类似的技术找到映射类群的子群的新的同调元素;继续寻找同调等价与基本群之间的进一步关系,并将这些结果应用于三维流形中的虚Betti数问题。PI还将扩展,亲p组的类别,Stallings,德怀尔,和Cochran-Harvey相关的组同源性的基础结果导出和较低的中心series.This项目研究的数学方面的形状,或拓扑结构,三维物体。形状对于抗病毒药物的设计,网络研究,搜索算法,物体的卫星识别,人体器官的医学成像和建模以及细胞DNA的功能至关重要。尽管所有常见的物体本质上都是三维的,但这些形状可能相当复杂。例如,蛋白质等大分子的形状非常复杂,而且大多数都是未知的,尽管这些知识对于创造抗病毒药物至关重要。成像设备如何在仅给出部分数据的情况下区分坦克和房屋?既然所有的大脑都是不同的,那么如何有效地量化人类大脑的形状呢?形状的科学研究需要数学思想,可以准确地量化这些对象的复杂非线性行为。非交换代数,例如AB不一定等于BA的矩阵,对于模拟简单的现实生活情况是必要的。这个项目将在非交换数学中开发新的工具,并将其应用于有关三维物体形状的特定问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim Cochran其他文献
Tim Cochran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim Cochran', 18)}}的其他基金
Noncommutativity in Low-Dimensional Topology
低维拓扑中的非交换性
- 批准号:
0706929 - 财政年份:2007
- 资助金额:
$ 14.33万 - 项目类别:
Continuing Grant
Noncommutative Algebraic Invariants in Low-Dimensional Topology
低维拓扑中的非交换代数不变量
- 批准号:
0406573 - 财政年份:2004
- 资助金额:
$ 14.33万 - 项目类别:
Continuing Grant
Non-Commutative Algebraic Phenomena in the Topology of Three- and Four-dimensional Spaces
三维和四维空间拓扑中的非交换代数现象
- 批准号:
0104275 - 财政年份:2001
- 资助金额:
$ 14.33万 - 项目类别:
Continuing Grant
Knotting and Linking Phenomena in Topology
拓扑中的打结和连接现象
- 批准号:
9803694 - 财政年份:1998
- 资助金额:
$ 14.33万 - 项目类别:
Continuing grant
Mathematical Sciences: Knotting and Linking Phenomena in Topology
数学科学:拓扑学中的结和连接现象
- 批准号:
9400224 - 财政年份:1995
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Computation in Geometry, Topology andErgodic Theory
数学科学:几何、拓扑和遍历理论中的计算
- 批准号:
9205540 - 财政年份:1992
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology and Geometry of Manifolds
数学科学:流形的拓扑和几何
- 批准号:
9100254 - 财政年份:1991
- 资助金额:
$ 14.33万 - 项目类别:
Continuing grant
Mathematical Sciences: Algebraic and Differential Topology
数学科学:代数和微分拓扑
- 批准号:
8903514 - 财政年份:1989
- 资助金额:
$ 14.33万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8511466 - 财政年份:1985
- 资助金额:
$ 14.33万 - 项目类别:
Fellowship Award
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Knot invariants and algebraic combinatorics
结不变量和代数组合
- 批准号:
23K03108 - 财政年份:2023
- 资助金额:
$ 14.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 14.33万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Algebraic Invariants for Phylogenetic Network Inference
系统发育网络推理的代数不变量
- 批准号:
EP/W007134/1 - 财政年份:2022
- 资助金额:
$ 14.33万 - 项目类别:
Research Grant
Computing algebraic invariants of symbolic dynamical systems
计算符号动力系统的代数不变量
- 批准号:
EP/V007459/2 - 财政年份:2022
- 资助金额:
$ 14.33万 - 项目类别:
Research Grant
Computing algebraic invariants of symbolic dynamical systems
计算符号动力系统的代数不变量
- 批准号:
EP/V007459/1 - 财政年份:2021
- 资助金额:
$ 14.33万 - 项目类别:
Research Grant
Research of hierarchy structures of spatial graphs and algebraic invariants
空间图层次结构与代数不变量研究
- 批准号:
19K03500 - 财政年份:2019
- 资助金额:
$ 14.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Derived Categories and Other Invariants of Algebraic Varieties
代数簇的派生范畴和其他不变量
- 批准号:
1902251 - 财政年份:2019
- 资助金额:
$ 14.33万 - 项目类别:
Continuing Grant
Algebraic invariants of spaces with group action
群作用空间的代数不变量
- 批准号:
2274577 - 财政年份:2019
- 资助金额:
$ 14.33万 - 项目类别:
Studentship
Representations and invariants of algebraic groups
代数群的表示和不变量
- 批准号:
2103094 - 财政年份:2018
- 资助金额:
$ 14.33万 - 项目类别:
Studentship