Collaborative Research: Bayesian Analysis and Applications

合作研究:贝叶斯分析与应用

基本信息

  • 批准号:
    1007773
  • 负责人:
  • 金额:
    $ 33.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Five research areas in Bayesian analysis, involving theory, methodology and application, will be pursued: objective Bayesian analysis, multiplicity adjustment, search and approximations in model selection, analysis of complex computer models, and differences between Bayes and empirical Bayes analysis. Research in objective Bayesian analysis will focus on the development of objective priors, together with their computational implementation, in semi-invariant contexts, which include spatial problems and problems arising in psychiatry. The Bayesian approach to multiplicity correction has the attraction that it does not depend on the error structure of the data; multiplicity correction is done only through the prior probabilities assigned to models or other multiplicity features. Understanding which probability assignments do, and do not, adjust for multiplicity will be an important feature of this research. A focus of the research on model selection will be the development of a generalization of BIC which is much more widely applicable than the standard version, especially overcoming the major hurdle of defining effective sample size for a parameter. Advances in these areas will have application to research involving the analysis and use of complex computer models of processes. Also, surprising differences between Bayes and empirical Bayes analysis arise in several of the above settings, and better understanding of these differences will also be a focus of the research.Objective Bayesian analysis has existed for over 250 years, but interest in the field has increased markedly in recent years. A major reason is that many of the significant scientific problems today (such as much of climate change research) involve some type of assimilation of data and physical modeling, typically done by Bayesian methods. Many of today?s most challenging problems ? including microarray and other bioinformatic analyses, syndromic surveillance, high-throughput screening, and many others ? involve consideration of multiple-testing with a huge number of possible tests, and require major multiplicity adjustments. For instance, the work on multiplicity will be done in the context of subgroup analysis in clinical trials, providing major new insights into HIV vaccine trials, and in refining detection methodology in high-energy physics.
贝叶斯分析的五个研究领域,涉及理论,方法和应用,将追求:客观贝叶斯分析,多重调整,搜索和近似模型选择,复杂的计算机模型分析,贝叶斯和经验贝叶斯分析之间的差异。在客观贝叶斯分析的研究将集中在客观先验的发展,连同他们的计算实现,在半不变的情况下,其中包括空间问题和精神病学中出现的问题。贝叶斯方法的多重性校正具有的吸引力,它不依赖于数据的错误结构;多重性校正只通过分配给模型或其他多重性特征的先验概率进行。了解哪些概率分配做,不,调整多重性将是本研究的一个重要特点。模型选择研究的一个重点将是BIC的推广,这是更广泛的适用于比标准版本的发展,特别是克服了定义有效样本量的参数的主要障碍。这些领域的进展将应用于涉及分析和使用复杂计算机模型的研究。此外,贝叶斯和经验贝叶斯分析之间的惊人差异出现在上述几个设置,更好地了解这些差异也将是研究的重点。客观贝叶斯分析已经存在了250多年,但在该领域的兴趣显着增加,近年来。一个主要原因是,今天许多重要的科学问题(如气候变化研究)涉及某种类型的数据同化和物理建模,通常由贝叶斯方法完成。今天很多人?最具挑战性的问题是什么?包括微阵列和其他生物信息学分析,症状监测,高通量筛选,以及许多其他?涉及考虑具有大量可能测试的多重测试,并且需要重大的多重性调整。例如,关于多重性的工作将在临床试验亚组分析的背景下进行,为艾滋病毒疫苗试验提供重要的新见解,并改进高能物理学的检测方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Berger其他文献

Bending, Twisting, Popping: Protein and Nucleic-Acid Remodeling by ATP-Dependent Machines and Switches
  • DOI:
    10.1016/j.bpj.2014.11.034
  • 发表时间:
    2015-01-27
  • 期刊:
  • 影响因子:
  • 作者:
    James Berger
  • 通讯作者:
    James Berger
Experimental Allogeneic Tooth Transplantation in the Rhesus Monkey
恒河猴实验性同种异体牙齿移植
  • DOI:
    10.1177/00220345680470030201
  • 发表时间:
    1968
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Fong;James Berger;Merle Morris
  • 通讯作者:
    Merle Morris
Structure of the E. Coli Gyrase DNA Binding and Cleavage Core Reveals A Unique Domain
  • DOI:
    10.1016/j.bpj.2009.12.1344
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Allyn Schoeffler;James Berger
  • 通讯作者:
    James Berger
Learning Statistics From Counterexamples
Discussion of David Freedman's “Some issues in the foundations of statistics”
  • DOI:
    10.1007/bf00208724
  • 发表时间:
    1995-03-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    James Berger
  • 通讯作者:
    James Berger

James Berger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Berger', 18)}}的其他基金

Bayesian Analysis and Interfaces
贝叶斯分析和接口
  • 批准号:
    1407775
  • 财政年份:
    2014
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Bayes 250 Conference
贝叶斯 250 会议
  • 批准号:
    1344683
  • 财政年份:
    2013
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Workshop on Data-Enabled Science
数据支持科学研讨会
  • 批准号:
    1035272
  • 财政年份:
    2010
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
  • 批准号:
    0112069
  • 财政年份:
    2002
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Cooperative Agreement
Bayesian Analysis and Frequentist Interfaces
贝叶斯分析和频率接口
  • 批准号:
    0103265
  • 财政年份:
    2001
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Group Travel Award to the 6th Valencia International Meeting on Bayesian Statistics to be held in Ibiza, Spain on June 6-10, 1998
第六届巴伦西亚贝叶斯统计国际会议团体旅游奖将于 1998 年 6 月 6 日至 10 日在西班牙伊维萨岛举行
  • 批准号:
    9714876
  • 财政年份:
    1998
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Bayesian Analysis, Decision Theory, and Applications
贝叶斯分析、决策理论和应用
  • 批准号:
    9802261
  • 财政年份:
    1998
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Multiple Decision Theory and Related Topics
数学科学:多重决策理论及相关主题会议
  • 批准号:
    9500062
  • 财政年份:
    1995
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Group Travel Award to the 5th International meeting on "Bayesian Statistics"; June 5-10, 1994; Alicante, Spain
数学科学:第五届“贝叶斯统计”国际会议团体旅游奖;
  • 批准号:
    9313045
  • 财政年份:
    1994
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigations in Bayesian Analysis,Statistical Decision Theory, and Computation
数学科学:贝叶斯分析、统计决策理论和计算研究
  • 批准号:
    9303556
  • 财政年份:
    1993
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了