Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
基本信息
- 批准号:1011738
- 负责人:
- 金额:$ 12.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-11-18 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will address the development of a class of novel and very efficient numerical methods for incompressible flows based on a reformulation of the Navier-Stokes equations that has been proved well-posed and provides boundary conditions for the viscous contribution to pressure in terms of vorticity circulation. The main insight is that the total creation of boundary vorticity can be computed exactly by a commutator between the Laplacian and Helmholtzprojection operators. Moreover, this term is dominated by the viscosity term, hence we can treat it explicitly to gain efficiency and stability. The major advance is that the method can be formulated in standard continuous finite element space, and there is no compatibility condition needed for the velocity and pressure approximation spaces. Hence the standard fast solver can be applied to Navier-Stokes equation directly.Accurate, efficient simulations of 3D flows in complicated domain are still major challeges for many scientific and engineering problems. The resolution of the flows near physical boundaries is essential to the accurate prediction of the body force such as the lift and drag, shedding of vortex and boundary layer separation. The success of this project will have an important impact on many branches of science and engineering. It will give more accurate predictions of body force which will result in better energy efficiency for transportation related applications. It will provide fast and reliable simulations for scientific research and engineering application.
该项目将针对不可压缩流的一类新的和非常有效的数值方法的开发,该方法基于已被证明是适定的Navier-Stokes方程的重新表述,并提供了涡度循环方面的粘性对压力的贡献的边界条件。 主要的见解是,总的创造边界涡可以精确计算的拉普拉斯和亥姆霍兹投影算子之间的换向器。此外,该项由粘度项支配,因此我们可以显式地处理它以获得效率和稳定性。该方法的主要优点是可以在标准的连续有限元空间中进行计算,并且在速度和压力近似空间中不需要协调条件。精确、高效地模拟复杂区域的三维流动仍然是许多科学和工程问题的主要挑战。物理边界附近流动的分辨率对于准确预测升力、阻力、旋涡脱落和边界层分离等物体力是必不可少的。这个项目的成功将对科学和工程的许多分支产生重要影响。它将提供更准确的体力预测,这将导致更好的能源效率为运输相关的应用。它将为科学研究和工程应用提供快速、可靠的模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian-Guo Liu其他文献
On the mean field limit for Brownian particles with Coulomb interaction in 3D
三维库仑相互作用布朗粒子的平均场极限
- DOI:
10.1063/1.5114854 - 发表时间:
2018-11 - 期刊:
- 影响因子:1.3
- 作者:
Lei Li;Jian-Guo Liu;Pu Yu - 通讯作者:
Pu Yu
Soliton structures for the (3 + 1)-dimensional Painlevé integrable equation in fluid mediums.
- DOI:
10.1038/s41598-024-62314-6 - 发表时间:
2024-05 - 期刊:
- 影响因子:4.6
- 作者:
Jian-Guo Liu - 通讯作者:
Jian-Guo Liu
<span> </span> <br class="MsoNormal" /> <span><span style="color: rgb(51, 51, 51); font-family: ;" Roman?,?serif?;?="" New="" Times="">Existence and uniqueness of global weak
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1
- 作者:
Xiuqing Chen;Xiaolong Li;Jian-Guo Liu; - 通讯作者:
Nonsymmetric traveling wave solution to a Hele-Shaw type tumor growth model
一个 Hele-Shaw 型肿瘤生长模型的非对称行波解
- DOI:
10.1016/j.jde.2025.113433 - 发表时间:
2025-09-25 - 期刊:
- 影响因子:2.300
- 作者:
Yu Feng;Qingyou He;Jian-Guo Liu;Zhennan Zhou - 通讯作者:
Zhennan Zhou
Multiple-soliton solutions, soliton-type solutions and rational solutions for the $$\varvec{(3+1)}$$ -dimensional generalized shallow water equation in oceans, estuaries and impoundments
- DOI:
10.1007/s11071-016-2914-y - 发表时间:
2016-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Zhi-Fang Zeng;Jian-Guo Liu;Bin Nie - 通讯作者:
Bin Nie
Jian-Guo Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian-Guo Liu', 18)}}的其他基金
Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
- 批准号:
2106988 - 财政年份:2021
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Collaborative Research: Nonlocal Models of Aggregation and Dispersion
合作研究:聚集和分散的非局部模型
- 批准号:
1812573 - 财政年份:2018
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Collaborative Research: Kinetic Models of Aggregation and Dispersion
合作研究:聚集和分散的动力学模型
- 批准号:
1514826 - 财政年份:2015
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
- 批准号:
0811177 - 财政年份:2008
- 资助金额:
$ 12.12万 - 项目类别:
Continuing Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
- 批准号:
0512176 - 财政年份:2005
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
- 批准号:
0107218 - 财政年份:2001
- 资助金额:
$ 12.12万 - 项目类别:
Continuing Grant
Efficient Numerical Methods for Unsteady Viscous Incompressible Flows
非定常粘性不可压缩流的高效数值方法
- 批准号:
9805621 - 财政年份:1998
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Mathematical Sciences: Efficient Numerical Methods for Large Reynolds Number Unsteady Viscous Incompressible Flows
数学科学:大雷诺数不稳定粘性不可压缩流的有效数值方法
- 批准号:
9505275 - 财政年份:1995
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
相似海外基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:
EP/W007436/1 - 财政年份:2022
- 资助金额:
$ 12.12万 - 项目类别:
Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2022
- 资助金额:
$ 12.12万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2022
- 资助金额:
$ 12.12万 - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
$ 12.12万 - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2021
- 资助金额:
$ 12.12万 - 项目类别:
Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2021
- 资助金额:
$ 12.12万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
- 批准号:
20K14356 - 财政年份:2020
- 资助金额:
$ 12.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:
2011943 - 财政年份:2020
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012269 - 财政年份:2020
- 资助金额:
$ 12.12万 - 项目类别:
Standard Grant