Efficient Numerical Methods for Viscous Incompressible Flows

粘性不可压缩流的高效数值方法

基本信息

  • 批准号:
    0512176
  • 负责人:
  • 金额:
    $ 28.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The investigator develops a class of efficient and accurate numericalmethods for the unsteady viscous incompressible Navier-Stokesequations (NSE) based a new unconstrained formulation of NSE withfully dissipation in contrast to the traditional formulation where theStokes operator is dissipative only in the divergence freefields. This class of NSE solver is unconditionally stable withexplicit treatment of both pressure and convection terms. Moreover, inthis class of finite element methods, there is no requirement of theso called inf-sup condition. The cost of solving NSE is greatlyreduced to solving a standard heat equation and a standard Poissonequation at each time step for general three dimensional fluid problems.The simplicity of the method also enable the PI to develop a class ofnumerical methods for complex fluids such as magneto-hydrodynamics,liquid crystal polymers, geodynamo, climate modeling, and large eddyturbulence simulations;Computational Fluid Dynamics has grown from a mathematical curiosityto become an essential tool in almost every branch of fluid dynamics,from aerospace propulsion to weather prediction and has receivedextensive attention throughout the international community since theadvent of the digital computer. The accuracy and efficiency of theproposed schemes will allow us to simulate general three-dimensionaltime-dependent flows with a reasonable turn-over time. It is expectedthat the proposed fast algorithms will become an important tool formany scientists and engineers in numerous scientific and industrialapplications of current interest.
研究人员发展了一类求解非定常粘性不可压缩Navier-Stokes方程(NSE)的高效而精确的数值方法,该方法基于一种新的完全耗散的无约束形式,而不是传统的Stokes算符只在散度自由场中耗散的形式。这类NSE求解器是无条件稳定的,同时显式处理了压力项和对流项。此外,在这类有限元方法中,没有所谓的inf-sup条件。对于一般的三维流体问题,求解NSE的成本大大降低为在每个时间步求解一个标准的热方程和一个标准的Poisson方程。该方法的简单性还使PI能够开发一类用于复杂流体的数值方法,如磁流体动力学、液晶聚合物、地质发电机、气候模拟和大涡湍流模拟;计算流体动力学已经从一个数学奇闻成长为几乎每个流体动力学分支的基本工具,从航空航天推进到天气预报,自从数字计算机出现以来,它在国际上受到了广泛的关注。所提出的格式的精度和效率将使我们能够以合理的翻转时间模拟一般的三维时变流动。预计所提出的快速算法将成为科学家和工程师在当前感兴趣的众多科学和工业应用中的重要工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian-Guo Liu其他文献

On the mean field limit for Brownian particles with Coulomb interaction in 3D
三维库仑相互作用布朗粒子的平均场极限
  • DOI:
    10.1063/1.5114854
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Lei Li;Jian-Guo Liu;Pu Yu
  • 通讯作者:
    Pu Yu
Soliton structures for the (3 + 1)-dimensional Painlevé integrable equation in fluid mediums.
  • DOI:
    10.1038/s41598-024-62314-6
  • 发表时间:
    2024-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jian-Guo Liu
  • 通讯作者:
    Jian-Guo Liu
Multiple-soliton solutions, soliton-type solutions and rational solutions for the $$\varvec{(3+1)}$$ -dimensional generalized shallow water equation in oceans, estuaries and impoundments
  • DOI:
    10.1007/s11071-016-2914-y
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Zhi-Fang Zeng;Jian-Guo Liu;Bin Nie
  • 通讯作者:
    Bin Nie
Nonsymmetric traveling wave solution to a Hele-Shaw type tumor growth model
一个 Hele-Shaw 型肿瘤生长模型的非对称行波解
  • DOI:
    10.1016/j.jde.2025.113433
  • 发表时间:
    2025-09-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Yu Feng;Qingyou He;Jian-Guo Liu;Zhennan Zhou
  • 通讯作者:
    Zhennan Zhou

Jian-Guo Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian-Guo Liu', 18)}}的其他基金

Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
  • 批准号:
    2106988
  • 财政年份:
    2021
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlocal Models of Aggregation and Dispersion
合作研究:聚集和分散的非局部模型
  • 批准号:
    1812573
  • 财政年份:
    2018
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Kinetic Models of Aggregation and Dispersion
合作研究:聚集和分散的动力学模型
  • 批准号:
    1514826
  • 财政年份:
    2015
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
  • 批准号:
    1011738
  • 财政年份:
    2009
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
  • 批准号:
    0811177
  • 财政年份:
    2008
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
  • 批准号:
    0107218
  • 财政年份:
    2001
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods for Unsteady Viscous Incompressible Flows
非定常粘性不可压缩流的高效数值方法
  • 批准号:
    9805621
  • 财政年份:
    1998
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Efficient Numerical Methods for Large Reynolds Number Unsteady Viscous Incompressible Flows
数学科学:大雷诺数不稳定粘性不可压缩流的有效数值方法
  • 批准号:
    9505275
  • 财政年份:
    1995
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant

相似海外基金

Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
  • 批准号:
    EP/W007436/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2022
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2022
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2021
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2021
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
  • 批准号:
    20K14356
  • 财政年份:
    2020
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
  • 批准号:
    2011943
  • 财政年份:
    2020
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
  • 批准号:
    2012269
  • 财政年份:
    2020
  • 资助金额:
    $ 28.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了