Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering

合作研究:流体和聚类模型中的动力学、奇点和变分结构

基本信息

  • 批准号:
    2106988
  • 负责人:
  • 金额:
    $ 23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The mathematical structure of numerous important models of dynamic behavior in science and data analysis is fundamentally related with optimality. Fluid motions optimize kinetic energy over time. Many systems in physical and information sciences tend to maximize entropy. Deep learning algorithms are trained by optimizing parameters for clustering and classifying big data sets. This project will improve our mathematical understanding of optimality principles and dynamics in several models of substantial current interest to researchers in a number of disciplines. These range from fluid dynamics and network routing to statistical sampling and data science to aerosol physics and animal ecology. Optimal transport theory will be used in a novel way to model fluid mixture dynamics and understand how fluid surface singularities can form. Gradient descent techniques will be investigated to analyze and improve the convergence of high-dimensional statistical sampling and wave-shape computations. Novel dynamical phenomena in merging-splitting models of clustering will be sought in models relevant to aerosol particle growth in atmospheric dynamics and the sharing of information in financial markets. These investigations will stimulate young researchers and students to participate, and will lead to results to be disseminated at conferences, research institutes, seminars, and lecture series.In particular, this project's research will focus on bringing ideas from variational analysis to bear upon several specific topics of current interest: (1) modeling how incompressible fluids may optimally mix through an entropy-regularized multi-marginal optimal transport formulation, which ought to make numerical computations feasible and may enable a precise characterization of optimal dynamic pathways; (2) demonstrating the formation of singularities on the surface of incompressible fluids in a scenario involving expansion from a corner, through a novel perturbation analysis of a simple geodesic flow; (3) establishing convergence of gradient-like flows to explain coherent-state formation and improve statistical sampling, by developing the use of Lojasiewicz estimates in infinite-dimensional nonlocal models; (4) identifying metastable states and nontrivial temporal dynamics in kinetic models of aggregation and breakup that lack a detailed-balance structure that would drive the syst em to equilibrium.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在科学和数据分析中,许多重要的动态行为模型的数学结构基本上都与最优性有关。 随着时间的推移,流体运动优化动能。 物理学和信息科学中的许多系统倾向于最大化熵。 深度学习算法是通过优化参数来训练的,用于对大数据集进行聚类和分类。 这个项目将提高我们的数学理解的最优性原则和动力学在几个模型的实质性当前感兴趣的研究人员在一些学科。这些范围从流体动力学和网络路由到统计采样和数据科学,再到气溶胶物理学和动物生态学。 最优传输理论将以一种新的方式用于模拟流体混合动力学,并了解流体表面奇点是如何形成的。 将研究梯度下降技术,以分析和改进高维统计采样的收敛性, 波形计算 将在与大气动力学中的气溶胶粒子增长和金融市场中的信息共享有关的模型中寻找聚类合并-分裂模型中的新动力学现象。 这些调查将激励年轻的研究人员和学生参与,并将导致结果将在会议,研究机构,研讨会和系列讲座中传播。特别是,该项目的研究将集中于将变分分析的思想应用于当前感兴趣的几个特定主题:(1)通过熵正则化的多边缘最优传输公式来建模不可压缩流体如何可以最优地混合,这应该使数值计算可行,并可能使最佳动态路径的精确表征;(2)证明在涉及从角膨胀的情况下不可压缩流体表面上奇点的形成,(3)通过在无限维非局部模型中发展Lojasiewicz估计的应用,建立类梯度流的收敛性,以解释相干态的形成和改进统计抽样;(4)在缺乏详细的-该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响进行评估来支持审查标准。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient flow formulation and second order numerical method for motion by mean curvature and contact line dynamics on rough surface
  • DOI:
    10.4171/ifb/451
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Gao;Jian‐Guo Liu
  • 通讯作者:
    Yuan Gao;Jian‐Guo Liu
Revisit of Macroscopic Dynamics for Some Non-equilibrium Chemical Reactions from a Hamiltonian Viewpoint
  • DOI:
    10.1007/s10955-022-02985-5
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Yuan Gao;Jian‐Guo Liu
  • 通讯作者:
    Yuan Gao;Jian‐Guo Liu
Existence and rigidity of the vectorial Peierls–Nabarro model for dislocations in high dimensions
  • DOI:
    10.1088/1361-6544/ac24e3
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Yuan Gao;Jian‐Guo Liu;Zibu Liu
  • 通讯作者:
    Yuan Gao;Jian‐Guo Liu;Zibu Liu
Analysis of a fourth-order exponential PDE arising from a crystal surface jump process with Metropolis-type transition rates
具有 Metropolis 型转变率的晶体表面跳跃过程引起的四阶指数 PDE 分析
  • DOI:
    10.2140/paa.2021.3.595
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gao, Yuan;Katsevich, Anya E.;Liu, Jian-Guo;Lu, Jianfeng;Marzuola, Jeremy L.
  • 通讯作者:
    Marzuola, Jeremy L.
Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space
重新审视希尔伯特空间中刃位错的 Peierls-Nabarro 模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian-Guo Liu其他文献

On the mean field limit for Brownian particles with Coulomb interaction in 3D
三维库仑相互作用布朗粒子的平均场极限
  • DOI:
    10.1063/1.5114854
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Lei Li;Jian-Guo Liu;Pu Yu
  • 通讯作者:
    Pu Yu
Soliton structures for the (3 + 1)-dimensional Painlevé integrable equation in fluid mediums.
  • DOI:
    10.1038/s41598-024-62314-6
  • 发表时间:
    2024-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jian-Guo Liu
  • 通讯作者:
    Jian-Guo Liu
Multiple-soliton solutions, soliton-type solutions and rational solutions for the $$\varvec{(3+1)}$$ -dimensional generalized shallow water equation in oceans, estuaries and impoundments
  • DOI:
    10.1007/s11071-016-2914-y
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Zhi-Fang Zeng;Jian-Guo Liu;Bin Nie
  • 通讯作者:
    Bin Nie
Nonsymmetric traveling wave solution to a Hele-Shaw type tumor growth model
一个 Hele-Shaw 型肿瘤生长模型的非对称行波解
  • DOI:
    10.1016/j.jde.2025.113433
  • 发表时间:
    2025-09-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Yu Feng;Qingyou He;Jian-Guo Liu;Zhennan Zhou
  • 通讯作者:
    Zhennan Zhou

Jian-Guo Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian-Guo Liu', 18)}}的其他基金

Collaborative Research: Nonlocal Models of Aggregation and Dispersion
合作研究:聚集和分散的非局部模型
  • 批准号:
    1812573
  • 财政年份:
    2018
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Kinetic Models of Aggregation and Dispersion
合作研究:聚集和分散的动力学模型
  • 批准号:
    1514826
  • 财政年份:
    2015
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
  • 批准号:
    1011738
  • 财政年份:
    2009
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
  • 批准号:
    0811177
  • 财政年份:
    2008
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
  • 批准号:
    0512176
  • 财政年份:
    2005
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
  • 批准号:
    0107218
  • 财政年份:
    2001
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods for Unsteady Viscous Incompressible Flows
非定常粘性不可压缩流的高效数值方法
  • 批准号:
    9805621
  • 财政年份:
    1998
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Efficient Numerical Methods for Large Reynolds Number Unsteady Viscous Incompressible Flows
数学科学:大雷诺数不稳定粘性不可压缩流的有效数值方法
  • 批准号:
    9505275
  • 财政年份:
    1995
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
  • 批准号:
    2310665
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了