Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
基本信息
- 批准号:0107218
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator proposes to continue the development of efficient and accurate numerical methods for unsteady incompressible flow, with particular emphasis on (i) finding new equivalent formulations of Navier-Stokes equations, often inspired by physical considerations, better suited to numerical computation; (ii) proper handling of boundary conditions, a key difficulty in the subject since important physical interactions frequently occur near the boundary; (iii) rapid computation of three dimensional flows and generalization of schemes for flows in complex geometries; (iv) development of efficient schemes for complex fluids such as magneto-hydrodynamics, liquid crystal polymers, geodynamo, climate modeling, and large eddy turbulence simulations; (v) design of numerical schemes that preserves numerically conserved quantities such as energy and helicity for inviscid flow, and accurately captures their dissipation rates at high Reynolds number.  It is widely believed that different dissipation rates for energy and helicity is the key mechanism leading to the formation of large coherent structures of turbulent flows.The numerical simulation of incompressible flows, which plays an important role in numerous scientific and industrial applications of current interest, is a challenging task for both numerical analysts and computational fluid dynamicists.  The proposed fast and accurate numerical methods for incompressible flow is expected to become an important tool for simulation and analysis of complex turbulent flow phenomena including vortex breakdown, (massive) flow separation, vortex shedding, transient jets in cross-stream, wake-body interaction, high-swirl flow, etc.  It is also an essential tool for the design of advanced flow control mechanisms used, for example, to reduce flow-induced noise and vibration, and to improve lift/drag performance at reduced energy consumption rates.  Examples include flow over bluff bodies such as ground or under-water vehicles; in engines; in/around rotating machinery or in data storage units with rotating and moving parts.
研究人员建议继续开发高效和精确的非定常不可压缩流动数值方法,特别强调:(I)寻找新的等效的Navier-Stokes方程公式,通常是出于物理考虑,更适合于数值计算;(Ii)正确处理边界条件,这是该学科中的一个关键困难,因为重要的物理相互作用经常发生在边界附近;(Iii)三维流动的快速计算和复杂几何形状流动的通用格式;(Iv)开发复杂流体的有效格式,如磁流体动力学、液晶聚合物、地球发电机、气候模拟和大涡湍流模拟;(V)设计数值格式,保持无粘流的能量和螺旋度等数值守恒量,并在高雷诺数时准确地捕捉它们的耗散率。人们普遍认为,能量和螺旋度的不同耗散率是导致湍流大相干结构形成的关键机制。不可压缩流动的数值模拟在许多当前感兴趣的科学和工业应用中发挥着重要作用,对数值分析人员和计算流体动力学人员来说都是一项具有挑战性的任务。所提出的快速、准确的不可压缩流动数值方法有望成为模拟和分析复杂湍流现象的重要工具,包括涡旋破裂、(质量)流分离、涡流脱落、横流中的瞬时喷流、尾迹干扰和大旋流等,也是设计先进的流动控制机制的重要工具,例如,减少流致噪声和振动,在降低能耗的情况下改善升阻性能。例如,绕过钝体,如地面或水下飞行器;在发动机中;在旋转机械内/周围,或在具有旋转和移动部件的数据存储单元中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
Jian-Guo Liu其他文献
On the mean field limit for Brownian particles with Coulomb interaction in 3D
三维库仑相互作用布朗粒子的平均场极限
- DOI:10.1063/1.5114854 
- 发表时间:2018-11 
- 期刊:
- 影响因子:1.3
- 作者:Lei Li;Jian-Guo Liu;Pu Yu 
- 通讯作者:Pu Yu 
Soliton structures for the (3 + 1)-dimensional Painlevé integrable equation in fluid mediums.
- DOI:10.1038/s41598-024-62314-6 
- 发表时间:2024-05 
- 期刊:
- 影响因子:4.6
- 作者:Jian-Guo Liu 
- 通讯作者:Jian-Guo Liu 
<span> </span> <br class="MsoNormal" /> <span><span style="color: rgb(51, 51, 51); font-family: ;" Roman?,?serif?;?="" New="" Times="">Existence and uniqueness of global weak
- DOI:
- 发表时间:2014 
- 期刊:
- 影响因子:1
- 作者:Xiuqing Chen;Xiaolong Li;Jian-Guo Liu; 
- 通讯作者:
Multiple-soliton solutions, soliton-type solutions and rational solutions for the $$\varvec{(3+1)}$$ -dimensional generalized shallow water equation in oceans, estuaries and impoundments
- DOI:10.1007/s11071-016-2914-y 
- 发表时间:2016-07-01 
- 期刊:
- 影响因子:6.000
- 作者:Zhi-Fang Zeng;Jian-Guo Liu;Bin Nie 
- 通讯作者:Bin Nie 
Nonsymmetric traveling wave solution to a Hele-Shaw type tumor growth model
一个 Hele-Shaw 型肿瘤生长模型的非对称行波解
- DOI:10.1016/j.jde.2025.113433 
- 发表时间:2025-09-25 
- 期刊:
- 影响因子:2.300
- 作者:Yu Feng;Qingyou He;Jian-Guo Liu;Zhennan Zhou 
- 通讯作者:Zhennan Zhou 
Jian-Guo Liu的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
{{ truncateString('Jian-Guo Liu', 18)}}的其他基金
Collaborative Research: Dynamics, singularities, and variational structure in models of fluids and clustering
合作研究:流体和聚类模型中的动力学、奇点和变分结构
- 批准号:2106988 
- 财政年份:2021
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
Collaborative Research: Nonlocal Models of Aggregation and Dispersion
合作研究:聚集和分散的非局部模型
- 批准号:1812573 
- 财政年份:2018
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
Collaborative Research: Kinetic Models of Aggregation and Dispersion
合作研究:聚集和分散的动力学模型
- 批准号:1514826 
- 财政年份:2015
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
- 批准号:1011738 
- 财政年份:2009
- 资助金额:$ 22万 
- 项目类别:Continuing Grant 
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
- 批准号:0811177 
- 财政年份:2008
- 资助金额:$ 22万 
- 项目类别:Continuing Grant 
Efficient Numerical Methods for Viscous Incompressible Flows
粘性不可压缩流的高效数值方法
- 批准号:0512176 
- 财政年份:2005
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
Efficient Numerical Methods for Unsteady Viscous Incompressible Flows
非定常粘性不可压缩流的高效数值方法
- 批准号:9805621 
- 财政年份:1998
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
Mathematical Sciences: Efficient Numerical Methods for Large Reynolds Number Unsteady Viscous Incompressible Flows
数学科学:大雷诺数不稳定粘性不可压缩流的有效数值方法
- 批准号:9505275 
- 财政年份:1995
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
相似海外基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:2309687 
- 财政年份:2023
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:EP/W007436/1 
- 财政年份:2022
- 资助金额:$ 22万 
- 项目类别:Research Grant 
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:RGPAS-2020-00102 
- 财政年份:2022
- 资助金额:$ 22万 
- 项目类别:Discovery Grants Program - Accelerator Supplements 
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:RGPIN-2020-06278 
- 财政年份:2022
- 资助金额:$ 22万 
- 项目类别:Discovery Grants Program - Individual 
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:569181-2022 
- 财政年份:2022
- 资助金额:$ 22万 
- 项目类别:Postgraduate Scholarships - Doctoral 
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:RGPIN-2020-06278 
- 财政年份:2021
- 资助金额:$ 22万 
- 项目类别:Discovery Grants Program - Individual 
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:RGPAS-2020-00102 
- 财政年份:2021
- 资助金额:$ 22万 
- 项目类别:Discovery Grants Program - Accelerator Supplements 
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
- 批准号:20K14356 
- 财政年份:2020
- 资助金额:$ 22万 
- 项目类别:Grant-in-Aid for Early-Career Scientists 
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:2011943 
- 财政年份:2020
- 资助金额:$ 22万 
- 项目类别:Standard Grant 
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:2012269 
- 财政年份:2020
- 资助金额:$ 22万 
- 项目类别:Standard Grant 

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



