The Influence of Atmospheric Conditions on Thermomechanical Processes and Proprieties of Snow
大气条件对雪热机械过程和特性的影响
基本信息
- 批准号:1014497
- 负责人:
- 金额:$ 34.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ice exists near its phase change temperature in the terrestrial environment. Consequently, snow on the ground is a thermodynamically active material with a granular structure that is continuously changing. The snowpack microstructure influences virtually all of its thermo-mechanical and optical properties. We will better determine the coupled environmental parameters governing near surface metamorphism and tie the consequent morphology to snow strength (important to avalanche potential) and energy balance at the terrestrial/atmosphere interface. We will integrate field, laboratory and numerical modeling. The three research hypotheses are: microstructural changes that occur due to natural atmospheric boundary conditions can be replicated in a laboratory environment and the resulting thermo-mechanical properties measured; anisotropic morphology of snow can be quantified and related to thermal conductivity and mechanical properties; process driven microstructure can be deduced based on thermal input. Field studies will be carried out at two existing alpine research sites. Field meteorological data will dictate imposed laboratory conditions to accurately replicate the natural environment and consequent metamorphic processes. Important microstructure will be developed in the state-of-the-art Cold Climate Simulation Chamber through simulation of observed natural conditions. We will develop near surface metamorphism laboratory protocols for radiation recrystallization, surface hoar growth and diurnal recrystallization. Theoretical aspects include developing a microstructure fabric tensor, non-equilibrium thermodynamics analyzing metamorphism and terrain modeling. A fabric tensor to describe thermo-mechanically relevant anisotropic directional morphology, which develops due to metamorphism, will be derived. Entropy production extremum concepts will be used to evaluate heat transport based on microstructure resulting from imposed temperature gradients. The contributions of the individual heat transfer processes (conduction, diffusion, convection) tend toward the most efficient cumulative heat transport (effective thermal conductivity). Taken together, these techniques will be used to analytically and empirically quantify this thermally-induced evolution in fabric and its subsequent effect on snow's effective material properties. We will measure thermo-mechanical properties, including; thermal conductivity, penetration resistance, shear/normal strength and bulk properties. An existing thermal model accounting for topography and terrain thermal properties will be implemented in field studies to assess spatial variability. We will work with the USFS National Avalanche Center to assist its mission to provide information, new developments and technology to snow safety practitioners. Additionally we will interface with the local USFS avalanche center to investigate how best to exploit thermal modeling of the snowcover for practical application. Interaction with a local ski area snow safety team provides an opportunity for this group to be involved in a scientific study in a field in which they have an intense interest. They will then go on to share their findings with colleagues in the field, expanding the impact.
在陆地环境中,冰在其相变温度附近存在。 因此,地面上的雪是具有连续变化的颗粒结构的化学活性材料。 积雪的微观结构影响几乎所有的热机械和光学性能。 我们将更好地确定控制近地表变质作用的耦合环境参数,并将随之而来的形态与雪强度(对雪崩潜力很重要)和陆地/大气界面的能量平衡联系起来。 我们将整合现场,实验室和数值模拟。 三个研究假设是:由于自然大气边界条件发生的微观结构变化可以在实验室环境中复制,并测量由此产生的热机械性能;雪的各向异性形态可以量化,并与热导率和机械性能相关;过程驱动的微观结构可以根据热输入推断。 实地研究将在两个现有的高山研究地点进行。 现场气象数据将决定强加的实验室条件,以准确地复制自然环境和随之而来的变质过程。 重要的微观结构将在最先进的冷气候模拟室中通过模拟观察到的自然条件进行开发。 我们将发展辐射重结晶、表面白霜生长和昼夜重结晶的近地表变质实验室规程。 理论方面包括构造张量的建立、变质作用的非平衡热力学分析和地形模拟。 一个组构张量来描述热机械相关的各向异性的方向形态,这是由于变质作用的发展,将推导出来。 熵产生极值概念将用于评估基于由施加的温度梯度产生的微观结构的热传递。 各个热传递过程(传导、扩散、对流)的贡献倾向于最有效的累积热传递(有效导热率)。 总之,这些技术将被用来分析和经验量化这种热诱导的演变在织物和其后续影响雪的有效材料性能。 我们将测量热机械性能,包括:热导率、抗渗透性、剪切/法向强度和体积性能。 将在实地研究中采用一个现有的热模型来说明地形和地形热特性,以评估空间变异性。 我们将与USFS国家雪崩中心合作,协助其使命,为雪地安全从业人员提供信息,新的发展和技术。 此外,我们将与当地的USFS雪崩中心进行合作,研究如何最好地利用积雪的热模型进行实际应用。 与当地滑雪场雪安全团队的互动为该团队提供了一个机会,让他们参与他们感兴趣的领域的科学研究。 然后,他们将继续与该领域的同事分享他们的发现,扩大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Adams其他文献
MESOTHELIOMA PRESENTING WITH HEMATOLOGIC CO-MALIGNANCY
- DOI:
10.1016/j.chest.2020.09.140 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Edward Adams;Siddhartha Narayanan;Elizabeth Chan;Jared Mickelson;Paulo Oliveira - 通讯作者:
Paulo Oliveira
Edward Adams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Adams', 18)}}的其他基金
RAPID: Collaborative Research: Deepwater Horizon: Simulating the three dimensional dispersal of aging oil with a Lagrangian approach
RAPID:合作研究:深水地平线:用拉格朗日方法模拟老化石油的三维扩散
- 批准号:
1048976 - 财政年份:2010
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multiscale plume modeling of the Deepwater Horizon oil-well blowout for environmental impact assessment and mitigation
RAPID:协作研究:深水地平线油井井喷的多尺度羽流建模,用于环境影响评估和缓解
- 批准号:
1046890 - 财政年份:2010
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
Snow Metamorphism, Near Surface Faceting
雪变质作用、近地表刻面
- 批准号:
0635977 - 财政年份:2007
- 资助金额:
$ 34.92万 - 项目类别:
Continuing Grant
'End of the world' language in the New Testament within its ancient context
新约中古代语境中的“世界末日”语言
- 批准号:
112573/1 - 财政年份:2006
- 资助金额:
$ 34.92万 - 项目类别:
Research Grant
Acquisition Proposal for Cold Chambers and Associated Equipment to Complete a Subzero Science and Engineering Facility at Montana State University
采购冷室和相关设备以完成蒙大拿州立大学零度以下科学与工程设施的提案
- 批准号:
0521360 - 财政年份:2005
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
相似海外基金
Linking Particulate Matter Oxidative Potential to Atmospheric Conditions and Particle Composition
将颗粒物氧化电位与大气条件和颗粒成分联系起来
- 批准号:
EP/X030237/1 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Fellowship
Excellence in Research: The study of dynamics of an atmospheric boundary layer laden with polydisperse spray under high-wind conditions of a hurricane
卓越研究:飓风大风条件下充满多分散喷雾的大气边界层动力学研究
- 批准号:
2302221 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
Advanced study of the atmospheric flow Integrating REal climate conditions to enhance wind farm and wind turbine power production and increase components durability
大气流动的高级研究结合真实的气候条件,以提高风电场和风力涡轮机的发电量并提高部件的耐用性
- 批准号:
10039246 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
EU-Funded
Flood-Inducing Atmospheric and Antecedent Conditions: Variation and Change Across the UK and Europe
引发洪水的大气和前期条件:英国和欧洲的变化和变化
- 批准号:
2598403 - 财政年份:2021
- 资助金额:
$ 34.92万 - 项目类别:
Studentship
PIV observations and the lattice Boltzmann simulations of turbulent transport in a plant canopy under stably-stratified atmospheric conditions
稳定分层大气条件下植物冠层湍流传输的 PIV 观测和晶格玻尔兹曼模拟
- 批准号:
20K04057 - 财政年份:2020
- 资助金额:
$ 34.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Atmospheric turbulence profiling in the day and strong turbulence conditions
白天的大气湍流剖面和强湍流条件
- 批准号:
2419794 - 财政年份:2020
- 资助金额:
$ 34.92万 - 项目类别:
Studentship
Enhancing Global Navigation Satellite Systems under atypical atmospheric conditions
增强非典型大气条件下的全球导航卫星系统
- 批准号:
518643-2018 - 财政年份:2019
- 资助金额:
$ 34.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of a generic physical model for breakdown and withstand voltages of air-gap insulated configurations in dependence of the atmospheric conditions
开发气隙绝缘配置的击穿电压和耐受电压与大气条件相关的通用物理模型
- 批准号:
410830434 - 财政年份:2019
- 资助金额:
$ 34.92万 - 项目类别:
Research Grants
Collaborative Research: P2C2--Assimilation of Cool and Warm Season Moisture Reconstructions and Atmospheric Conditions Over North America for the Past Millennium
合作研究:P2C2——过去千年北美冷暖季水分重建和大气条件的同化
- 批准号:
1702894 - 财政年份:2018
- 资助金额:
$ 34.92万 - 项目类别:
Standard Grant
Enhancing Global Navigation Satellite Systems under atypical atmospheric conditions
增强非典型大气条件下的全球导航卫星系统
- 批准号:
518643-2018 - 财政年份:2018
- 资助金额:
$ 34.92万 - 项目类别:
Postgraduate Scholarships - Doctoral