CAREER: Creating Materials via Active Self-Assembly Driven by Biomolecular Motors

职业:通过生物分子马达驱动的主动自组装创造材料

基本信息

  • 批准号:
    1015486
  • 负责人:
  • 金额:
    $ 30.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This Career award by the Biomaterials program in the Division of Materials Research to University of Florida is to support studies in understanding the crucial first steps towards assembling strained and non-equilibrium structures which significantly expand the accessible design space in nanotechnology. The objective of the program is to show that the current boundaries of self-assemblies can be dramatically expanded by biomolecular motors. Specifically, the proposed studies will be shown that biomolecular motors can: (1) accelerate self-assembly; (2) generate non-equilibrium structures; (3) impose an assembly hierarchy; (4) assemble macroscopic structures from nanoscale building blocks; and (5) integrate synthetic building blocks. To this end, the project utilizes a carefully crafted combination of experiments, theory, and computer simulations to generate insights into the dynamics of a model system, which is based on functionalized microtubules gliding and self assembling on kinesin motor-coated surfaces. Using taxol-stabilized and biotinylated microtubules as building blocks ranging in size from 1 micrometer to 50 micrometer in length will be prepared. The assembly of biotinylated microtubules partially covered with streptavidin will be conducted on kinesin-coated and lipid layer-coated surfaces to compare motor-driven and diffusion-driven assemblies respectively. The goal of the program is to formulate the rules governing these "activated" self-assembly processes. These insights will impact the synthesis of nanostructures with applications in molecular electronics and adaptive materials, and will also dramatically further our understanding of the role of biomolecular motors in the assembly of biological materials. By dissecting the processes of hierarchical assembly and the integration of synthetic building blocks, it would be possible that a large number of independent transporters in combination with a basic set of interaction rules can assemble complex structures with sizes orders of magnitude larger than the individual transporter. This represents a biomimetic approach to the rapid assembly of nanoscale building blocks into complex nano- and mesoscale structures, which marries self-assembly principles with the controlled generation of molecular forces by nanomachines. The nanomachines of choice are biomolecular motors, which can efficiently convert chemical energy into mechanical work. A cellular automaton-based approach will be used to model the dynamics of the system, and assemble a software package to provide a general modeling tool for molecular motor-based self-assembly. The research project spans the interface between the life sciences and engineering, drawing inspirations and materials from biology and quantitative approaches and applications from engineering. Two innovative activities are proposed to integrate research and teaching: (1) Development of a software program in collaborative with computer scientists to visualize thermal motion in experiments that are being developed, and this visualization is to provide an improved view into the nanoworld. In addition to visualizing the systems, the software will build a game, which lets the player act in a nanoworld buffeted by thermal motion; and (2) Interdisciplinary training of undergraduate students through international collaborations and interactions, which will be expanded on existing collaborations of the PI through a program for international research experiences for undergraduate students at University of Florida in Germany, Switzerland, Great Britain and Japan.
生物材料计划在佛罗里达大学的材料研究部门获得的职业奖是为了支持理解组装紧张和非平衡结构的关键第一步,这些步骤大大扩大了纳米技术中可访问的设计空间。该程序的目的是表明,可以通过生物分子电动机大大扩展自组件的当前边界。具体而言,拟议的研究将表明,生物分子电动机可以:(1)加速自组装; (2)产生非平衡结构; (3)施加集会层次结构; (4)从纳米级构建块组装宏观结构; (5)整合合成构建块。 为此,该项目利用实验,理论和计算机模拟的精心制作的组合来生成对模型系统动力学的见解,该动力基于功能化的微管滑行和自我组装在驱动蛋白运动涂层的表面上。 使用紫杉醇稳定的和生物素化的微管作为构建块,尺寸从1微米到50千分尺,将制备。将分别在运动蛋白涂层和脂质层涂层的表面上进行部分覆盖的生物素化微管的组装,分别比较运动驱动和扩散驱动的组件。 该计划的目的是制定管理这些“激活”自组装过程的规则。这些见解将影响纳米结构在分子电子和适应性材料中的应用,也将显着进一步进一步了解我们对生物分子电动机在生物材料组装中的作用的理解。 通过解剖层次组件的过程和合成构建块的整合,可能会与大量的独立转运蛋白与一组基本的相互作用规则结合使用,可以组装出比单个转运蛋白大的数量级的复杂结构。 这代表了纳米级构建块快速组装成复杂的纳米尺度和中尺度结构的仿生方法,该结构将自组装原理与纳米机器受控的分子力相结合。选择的纳米机器是生物分子电动机,可以有效地将化学能转化为机械工作。 基于蜂窝自动机的方法将用于建模系统的动力学,并组装软件包,以提供基于分子运动的自组装的一般建模工具。 该研究项目跨越了生命科学与工程学之间的界面,从生物学以及工程学的定量方法和应用中汲取了灵感和材料。提出了两项​​创新的活动来整合研究和教学:(1)与计算机科学家合作开发软件程序,以可视化正在开发的实验中的热运动,并且这种可视化是为了对纳米诺夫世界提供改进的视图。除了可视化系统外,该软件还将构建一个游戏,该游戏使玩家可以用热运动燃烧的纳米世界行动; (2)通过国际合作和互动对本科生的跨学科培训,这将通过针对佛罗里达大学德国,瑞士,英国,英国和日本的本科生的国际研究经验计划扩展PI的现有合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Hess其他文献

Microtubules function as mechanosensor to regulate intracellular transport
微管充当机械传感器来调节细胞内运输
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Arif Md Rashedul Kabir;Kazuki Sada;Takefumi Yamashita;Mitsunori Ikeguchi;Takayuki Uchihashi;Henry Hess;Akira Kakugo;Akira Kakugo
  • 通讯作者:
    Akira Kakugo
Cytoskeletal motor-driven active self-assembly in in vitro systems.
体外系统中细胞骨架电机驱动的主动自组装。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Lam;V. Vandelinder;A. Kabir;Henry Hess;G. Bachand;A. Kakugo
  • 通讯作者:
    A. Kakugo
Velocity-dependence of Cargo Loading onto Molecular Shuttles Demonstrates the Glue-like Character of Biotin/Streptavidin
  • DOI:
    10.1016/j.bpj.2008.12.1588
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ashutosh Agarwal;Henry Hess
  • 通讯作者:
    Henry Hess
High-Resolution Observation of the Effect of Deformation Microtubule on Single Kinesin Motility
变形微管对单个驱动蛋白运动影响的高分辨率观察
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Kazuki Sada;Takayuki Uchihashi;Henry Hess;Akira Kakugo
  • 通讯作者:
    Akira Kakugo
わたしたちに音楽がある理由 (源 健宏、pp. 128-142)
我们拥有音乐的原因(Takehiro Minamoto,第 128-142 页)
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Kazuki Sada;Takayuki Uchihashi;Henry Hess;Akira Kakugo;根ケ山光一・今川恭子・香田啓貴・関 義正・藤井進也・蒲谷槙介・石島このみ・服部裕子・高田 明・麦谷綾子・市川 熹・源 健宏・岸本 健・福山寛志・横井浩史・横井和恵・矢吹佳子・志村洋子・市川 恵・丸山 慎・伊原小百合・二俣 泉・小井塚ななえ・石川眞佐江・小川容子・本多佐保美
  • 通讯作者:
    根ケ山光一・今川恭子・香田啓貴・関 義正・藤井進也・蒲谷槙介・石島このみ・服部裕子・高田 明・麦谷綾子・市川 熹・源 健宏・岸本 健・福山寛志・横井浩史・横井和恵・矢吹佳子・志村洋子・市川 恵・丸山 慎・伊原小百合・二俣 泉・小井塚ななえ・石川眞佐江・小川容子・本多佐保美

Henry Hess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Hess', 18)}}的其他基金

EAGER: Towards a Homeostatic Nanobio-Hybrid Mechanical System
EAGER:迈向稳态纳米生物混合机械系统
  • 批准号:
    2230116
  • 财政年份:
    2022
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Standard Grant
Creating Dynamic and Adaptive Force-Producing Nanostructures
创建动态和自适应力产生纳米结构
  • 批准号:
    1807514
  • 财政年份:
    2018
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Continuing Grant
Molecular-scale Breaking due to Repeated Loading in Molecular Shuttles
分子穿梭重复加载导致分子尺度断裂
  • 批准号:
    1662329
  • 财政年份:
    2017
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Standard Grant
Accelerated Degradation of Active Nanosystems by Biomolecular Motors
生物分子马达加速活性纳米系统的降解
  • 批准号:
    0926790
  • 财政年份:
    2009
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Standard Grant
CAREER: Creating Materials via Active Self-Assembly Driven by Biomolecular Motors
职业:通过生物分子马达驱动的主动自组装创造材料
  • 批准号:
    0645023
  • 财政年份:
    2007
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

在棉花纤维中操作类胡萝卜素途径创建新型彩色棉材料及相关机制研究
  • 批准号:
    U2003209
  • 批准年份:
    2020
  • 资助金额:
    265 万元
  • 项目类别:
    联合基金项目
基于离子共轭有机材料的通用气体传感模型的创建及器件开发
  • 批准号:
    21978185
  • 批准年份:
    2019
  • 资助金额:
    66 万元
  • 项目类别:
    面上项目
考虑材料损伤的自由曲面结构形态创建理论与方法研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
“强化富集/催化降解”双功能一体化材料的创建及其对低浓度VOCs的深度治理研究
  • 批准号:
    21938006
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
    重点项目
基于AIE掺杂的聚离子液体反蛋白石结构创建用于多组分鉴别分析的单光子微球传感体系
  • 批准号:
    21773135
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Standard Grant
Re-creating the Historical Materials of the Chinese Communist Party
重建中国共产党史料
  • 批准号:
    23H00675
  • 财政年份:
    2023
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creating biodegradable and recyclable lignocellulose-based materials for flexible packaging solutions
为软包装解决方案创造可生物降解和可回收的木质纤维素材料
  • 批准号:
    2888413
  • 财政年份:
    2023
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Studentship
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
  • 批准号:
    2226414
  • 财政年份:
    2022
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
  • 批准号:
    2226416
  • 财政年份:
    2022
  • 资助金额:
    $ 30.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了