CAREER: Creating Materials via Active Self-Assembly Driven by Biomolecular Motors
职业:通过生物分子马达驱动的主动自组装创造材料
基本信息
- 批准号:1015486
- 负责人:
- 金额:$ 30.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Career award by the Biomaterials program in the Division of Materials Research to University of Florida is to support studies in understanding the crucial first steps towards assembling strained and non-equilibrium structures which significantly expand the accessible design space in nanotechnology. The objective of the program is to show that the current boundaries of self-assemblies can be dramatically expanded by biomolecular motors. Specifically, the proposed studies will be shown that biomolecular motors can: (1) accelerate self-assembly; (2) generate non-equilibrium structures; (3) impose an assembly hierarchy; (4) assemble macroscopic structures from nanoscale building blocks; and (5) integrate synthetic building blocks. To this end, the project utilizes a carefully crafted combination of experiments, theory, and computer simulations to generate insights into the dynamics of a model system, which is based on functionalized microtubules gliding and self assembling on kinesin motor-coated surfaces. Using taxol-stabilized and biotinylated microtubules as building blocks ranging in size from 1 micrometer to 50 micrometer in length will be prepared. The assembly of biotinylated microtubules partially covered with streptavidin will be conducted on kinesin-coated and lipid layer-coated surfaces to compare motor-driven and diffusion-driven assemblies respectively. The goal of the program is to formulate the rules governing these "activated" self-assembly processes. These insights will impact the synthesis of nanostructures with applications in molecular electronics and adaptive materials, and will also dramatically further our understanding of the role of biomolecular motors in the assembly of biological materials. By dissecting the processes of hierarchical assembly and the integration of synthetic building blocks, it would be possible that a large number of independent transporters in combination with a basic set of interaction rules can assemble complex structures with sizes orders of magnitude larger than the individual transporter. This represents a biomimetic approach to the rapid assembly of nanoscale building blocks into complex nano- and mesoscale structures, which marries self-assembly principles with the controlled generation of molecular forces by nanomachines. The nanomachines of choice are biomolecular motors, which can efficiently convert chemical energy into mechanical work. A cellular automaton-based approach will be used to model the dynamics of the system, and assemble a software package to provide a general modeling tool for molecular motor-based self-assembly. The research project spans the interface between the life sciences and engineering, drawing inspirations and materials from biology and quantitative approaches and applications from engineering. Two innovative activities are proposed to integrate research and teaching: (1) Development of a software program in collaborative with computer scientists to visualize thermal motion in experiments that are being developed, and this visualization is to provide an improved view into the nanoworld. In addition to visualizing the systems, the software will build a game, which lets the player act in a nanoworld buffeted by thermal motion; and (2) Interdisciplinary training of undergraduate students through international collaborations and interactions, which will be expanded on existing collaborations of the PI through a program for international research experiences for undergraduate students at University of Florida in Germany, Switzerland, Great Britain and Japan.
这一职业奖项由材料研究部生物材料项目授予佛罗里达大学,旨在支持研究人员了解组装张力和非平衡结构的关键第一步,这些结构显著扩大了纳米技术的可访问性设计空间。该计划的目标是证明生物分子马达可以极大地扩展自组装的当前边界。具体地说,拟议的研究将表明,生物分子马达可以:(1)加速自组装;(2)产生非平衡结构;(3)施加组装层次;(4)从纳米级构建块组装宏观结构;以及(5)集成合成构建块。为此,该项目利用精心设计的实验、理论和计算机模拟的组合来生成对模型系统动力学的见解,该模型系统基于运动微管在电机涂层表面的功能微管滑动和自组装。使用紫杉醇稳定的和生物素化的微管作为构建块,长度从1微米到50微米不等。部分覆盖链霉亲和素的生物素化微管的组装将在动蛋白涂层和脂类涂层表面进行,以分别比较电机驱动和扩散驱动的组装。该计划的目标是制定管理这些“激活的”自组装过程的规则。这些见解将影响纳米结构的合成及其在分子电子学和自适应材料中的应用,并将极大地促进我们对生物分子马达在生物材料组装中的作用的理解。通过剖析分层组装和合成构建块的整合过程,大量独立的转运体与一套基本的相互作用规则相结合,将有可能组装出尺寸比单个转运体大几个数量级的复杂结构。这代表了一种仿生方法,可以将纳米级的积木快速组装成复杂的纳米和介观结构,将自组装原理与纳米机器可控地产生分子力结合在一起。选择的纳米机器是生物分子马达,可以有效地将化学能转化为机械功。基于元胞自动机的方法将被用来对系统的动力学进行建模,并组装一个软件包,为基于分子马达的自组装提供一个通用的建模工具。该研究项目横跨生命科学和工程学之间的界面,从生物学中汲取灵感和材料,从工程学中获得定量方法和应用。提出了两项创新活动来整合研究和教学:(1)与计算机科学家合作开发一个软件程序,以可视化正在开发的实验中的热运动,这种可视化是为了提供对纳米世界的更好的看法。除了可视化系统,该软件还将构建一款游戏,让玩家在受到热运动打击的纳米世界中行动;以及(2)通过国际合作和互动对本科生进行跨学科培训,这将通过德国、瑞士、英国和日本佛罗里达大学为本科生提供的国际研究体验计划,在PI现有合作的基础上扩大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Hess其他文献
Microtubules function as mechanosensor to regulate intracellular transport
微管充当机械传感器来调节细胞内运输
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Arif Md Rashedul Kabir;Kazuki Sada;Takefumi Yamashita;Mitsunori Ikeguchi;Takayuki Uchihashi;Henry Hess;Akira Kakugo;Akira Kakugo - 通讯作者:
Akira Kakugo
Cytoskeletal motor-driven active self-assembly in in vitro systems.
体外系统中细胞骨架电机驱动的主动自组装。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.4
- 作者:
A. Lam;V. Vandelinder;A. Kabir;Henry Hess;G. Bachand;A. Kakugo - 通讯作者:
A. Kakugo
Velocity-dependence of Cargo Loading onto Molecular Shuttles Demonstrates the Glue-like Character of Biotin/Streptavidin
- DOI:
10.1016/j.bpj.2008.12.1588 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Ashutosh Agarwal;Henry Hess - 通讯作者:
Henry Hess
わたしたちに音楽がある理由 (源 健宏、pp. 128-142)
我们拥有音乐的原因(Takehiro Minamoto,第 128-142 页)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Kazuki Sada;Takayuki Uchihashi;Henry Hess;Akira Kakugo;根ケ山光一・今川恭子・香田啓貴・関 義正・藤井進也・蒲谷槙介・石島このみ・服部裕子・高田 明・麦谷綾子・市川 熹・源 健宏・岸本 健・福山寛志・横井浩史・横井和恵・矢吹佳子・志村洋子・市川 恵・丸山 慎・伊原小百合・二俣 泉・小井塚ななえ・石川眞佐江・小川容子・本多佐保美 - 通讯作者:
根ケ山光一・今川恭子・香田啓貴・関 義正・藤井進也・蒲谷槙介・石島このみ・服部裕子・高田 明・麦谷綾子・市川 熹・源 健宏・岸本 健・福山寛志・横井浩史・横井和恵・矢吹佳子・志村洋子・市川 恵・丸山 慎・伊原小百合・二俣 泉・小井塚ななえ・石川眞佐江・小川容子・本多佐保美
High-Resolution Observation of the Effect of Deformation Microtubule on Single Kinesin Motility
变形微管对单个驱动蛋白运动影响的高分辨率观察
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Kazuki Sada;Takayuki Uchihashi;Henry Hess;Akira Kakugo - 通讯作者:
Akira Kakugo
Henry Hess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Hess', 18)}}的其他基金
EAGER: Towards a Homeostatic Nanobio-Hybrid Mechanical System
EAGER:迈向稳态纳米生物混合机械系统
- 批准号:
2230116 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Creating Dynamic and Adaptive Force-Producing Nanostructures
创建动态和自适应力产生纳米结构
- 批准号:
1807514 - 财政年份:2018
- 资助金额:
$ 30.63万 - 项目类别:
Continuing Grant
Molecular-scale Breaking due to Repeated Loading in Molecular Shuttles
分子穿梭重复加载导致分子尺度断裂
- 批准号:
1662329 - 财政年份:2017
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Accelerated Degradation of Active Nanosystems by Biomolecular Motors
生物分子马达加速活性纳米系统的降解
- 批准号:
0926790 - 财政年份:2009
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
CAREER: Creating Materials via Active Self-Assembly Driven by Biomolecular Motors
职业:通过生物分子马达驱动的主动自组装创造材料
- 批准号:
0645023 - 财政年份:2007
- 资助金额:
$ 30.63万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Re-creating the Historical Materials of the Chinese Communist Party
重建中国共产党史料
- 批准号:
23H00675 - 财政年份:2023
- 资助金额:
$ 30.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creating biodegradable and recyclable lignocellulose-based materials for flexible packaging solutions
为软包装解决方案创造可生物降解和可回收的木质纤维素材料
- 批准号:
2888413 - 财政年份:2023
- 资助金额:
$ 30.63万 - 项目类别:
Studentship
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
- 批准号:
2226414 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
- 批准号:
2226416 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
- 批准号:
2226417 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Creating New Aerospace Technician Pathways Using Space Materials Design and Fabrication Skills Training
利用空间材料设计和制造技能培训创建新的航空航天技术人员途径
- 批准号:
2201625 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant
Creating New Tactile Sensations for Tactile Aids with Designer Materials
使用设计师材料为触觉辅助工具创造新的触觉感觉
- 批准号:
10556425 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Ion beams: creating functionalities and probing interfaces in materials
离子束:在材料中创建功能和探测界面
- 批准号:
RGPIN-2020-06679 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
- 批准号:
2226418 - 财政年份:2022
- 资助金额:
$ 30.63万 - 项目类别:
Standard Grant














{{item.name}}会员




