EAGER: Towards a Homeostatic Nanobio-Hybrid Mechanical System
EAGER:迈向稳态纳米生物混合机械系统
基本信息
- 批准号:2230116
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nature’s ability to balance degradation with self-repair enables long-lasting mechanically active structures. For example, the molecular motors responsible for the contraction of a heart muscle are replaced every few days, allowing the muscle to pump blood for a hundred years. In today’s engineered systems, moving parts age due to mechanical wear and fatigue and have to be replaced while the system is taken offline. The long-term goal of this EArly-concept Grant for Exploratory Research (EAGER) project is to create engineered systems which renew themselves at the molecular level. This award supports exploratory research into adding repair mechanisms to a nanoscale transport system. By demonstrating the feasibility of countering specific degradation processes with specific repair processes, the work will show that a long-lived system which maintains itself in a functional state could be constructed. The US economy will benefit significantly if the lifetime of machines and structures can be extended and interruptions in service can be avoided. The design of “living” engineered systems will also advance our understanding of the biological structures in our own bodies. The project will broaden the participation of underrepresented groups in engineering. Outreach activities will inspire a new generation of high school students to pursue an engineering education. Biological molecular motors enable the construction of active nanoscale transport systems with applications in biosensing, biocomputing and nanomanufacturing, where a cargo-carrying or functionalized microtubule is propelled by surface-adhere kinesin motor proteins. Past work has quantified the degradation mechanisms of microtubules due to the action of the surface-adhered kinesin motors propelling it forward. The goal of this project is to take the next step and to actively counteract specific degradation mechanisms. The primary microtubule degradation mechanisms of shrinking and breaking can be potentially counteracted by growth via polymerization and fusing of microtubule segments. Significant technical challenges in implementing these self-repair mechanisms exist and the feasibility of achieving a steady state where degradation and self-repair are balanced has to be determined. Specifically, the project will demonstrate that growth and fusing can be precisely quantified and controlled. The outcome of the project will be a potentially transformational transition towards “living” engineered systems, which self-repair, that is use active, energy-consuming processes to maintain their functional state at the molecular scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界平衡降解与自我修复的能力使持久的机械活性结构成为可能。例如,负责心肌收缩的分子马达每隔几天就会更换一次,使肌肉能够泵血一百年。在当今的工程系统中,运动部件由于机械磨损和疲劳而老化,并且必须在系统离线时更换。这个早期概念的探索性研究资助(EAGER)项目的长期目标是创建在分子水平上自我更新的工程系统。该奖项支持将修复机制添加到纳米级运输系统的探索性研究。通过证明用特定的修复过程来对抗特定的降解过程的可行性,这项工作将表明可以构建一个能够保持自身功能状态的长寿命系统。如果机器和结构的使用寿命能够延长,并且能够避免服务中断,美国经济将受益匪浅。“活的”工程系统的设计也将促进我们对自己体内生物结构的理解。该项目将扩大代表性不足的群体对工程的参与。推广活动将激励新一代高中生追求工程教育。生物分子马达使得能够构建具有生物传感、生物计算和纳米制造应用的主动纳米级运输系统,其中运载货物或功能化微管由表面粘附的驱动蛋白马达蛋白推动。过去的工作已经量化了微管的降解机制,由于表面粘附的驱动蛋白马达推动它前进的行动。该项目的目标是采取下一步行动,积极应对特定的退化机制。收缩和断裂的主要微管降解机制可以通过微管片段的聚合和融合而被生长所抵消。在实施这些自我修复机制方面存在重大技术挑战,并且必须确定实现降解和自我修复平衡的稳定状态的可行性。具体来说,该项目将证明生长和融合可以精确量化和控制。该项目的结果将是一个潜在的转型过渡到“活”的工程系统,自我修复,即使用积极的,耗能的过程,以保持其功能状态在分子尺度上。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Hess其他文献
Microtubules function as mechanosensor to regulate intracellular transport
微管充当机械传感器来调节细胞内运输
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Arif Md Rashedul Kabir;Kazuki Sada;Takefumi Yamashita;Mitsunori Ikeguchi;Takayuki Uchihashi;Henry Hess;Akira Kakugo;Akira Kakugo - 通讯作者:
Akira Kakugo
Cytoskeletal motor-driven active self-assembly in in vitro systems.
体外系统中细胞骨架电机驱动的主动自组装。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.4
- 作者:
A. Lam;V. Vandelinder;A. Kabir;Henry Hess;G. Bachand;A. Kakugo - 通讯作者:
A. Kakugo
Velocity-dependence of Cargo Loading onto Molecular Shuttles Demonstrates the Glue-like Character of Biotin/Streptavidin
- DOI:
10.1016/j.bpj.2008.12.1588 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Ashutosh Agarwal;Henry Hess - 通讯作者:
Henry Hess
わたしたちに音楽がある理由 (源 健宏、pp. 128-142)
我们拥有音乐的原因(Takehiro Minamoto,第 128-142 页)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Kazuki Sada;Takayuki Uchihashi;Henry Hess;Akira Kakugo;根ケ山光一・今川恭子・香田啓貴・関 義正・藤井進也・蒲谷槙介・石島このみ・服部裕子・高田 明・麦谷綾子・市川 熹・源 健宏・岸本 健・福山寛志・横井浩史・横井和恵・矢吹佳子・志村洋子・市川 恵・丸山 慎・伊原小百合・二俣 泉・小井塚ななえ・石川眞佐江・小川容子・本多佐保美 - 通讯作者:
根ケ山光一・今川恭子・香田啓貴・関 義正・藤井進也・蒲谷槙介・石島このみ・服部裕子・高田 明・麦谷綾子・市川 熹・源 健宏・岸本 健・福山寛志・横井浩史・横井和恵・矢吹佳子・志村洋子・市川 恵・丸山 慎・伊原小百合・二俣 泉・小井塚ななえ・石川眞佐江・小川容子・本多佐保美
High-Resolution Observation of the Effect of Deformation Microtubule on Single Kinesin Motility
变形微管对单个驱动蛋白运动影响的高分辨率观察
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Syeda Rubaiya Nasrin;Christian Ganser;Seiji Nishikawa;Kazuki Sada;Takayuki Uchihashi;Henry Hess;Akira Kakugo - 通讯作者:
Akira Kakugo
Henry Hess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Hess', 18)}}的其他基金
Creating Dynamic and Adaptive Force-Producing Nanostructures
创建动态和自适应力产生纳米结构
- 批准号:
1807514 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Molecular-scale Breaking due to Repeated Loading in Molecular Shuttles
分子穿梭重复加载导致分子尺度断裂
- 批准号:
1662329 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Creating Materials via Active Self-Assembly Driven by Biomolecular Motors
职业:通过生物分子马达驱动的主动自组装创造材料
- 批准号:
1015486 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Accelerated Degradation of Active Nanosystems by Biomolecular Motors
生物分子马达加速活性纳米系统的降解
- 批准号:
0926790 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Creating Materials via Active Self-Assembly Driven by Biomolecular Motors
职业:通过生物分子马达驱动的主动自组装创造材料
- 批准号:
0645023 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
- 批准号:
DE240100109 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Early Career Researcher Award
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
- 批准号:
EP/X019624/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
- 批准号:
2327411 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349935 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349934 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant