Multiscale Algorithms for Wave Propagation

波传播的多尺度算法

基本信息

  • 批准号:
    1016577
  • 负责人:
  • 金额:
    $ 27.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Most scientific processes and their related mathematical models have important features in a wide range of time and length scales. Some typical examples related to the computation of waves are propagation and scattering of high frequency waves and interaction of the wave field with complex media. Discretizing these problems directly at the finest scale and solving the resulting systems with standard numerical algorithms inevitably leads to an enormous computational problem with unacceptable long computation times and large memory requirements. Building on our previous experience in multiscale algorithms, we plan to design, implement, and analyze novel algorithms for problems in high frequency wave propagation and related fields. Such problems are challenging since many well-known techniques, such as multigrid and standard fast multipole methods have limited efficiency. We will focus on the following three topics: (1) high frequency acoustic and electromagnetic scattering, (2) Gaussian beam methods for high frequency wave and Schrodinger equations, and (3) homogenization of complex media with multiple reiterated scales.The overarching theme of the research presented in this proposal is to exploit the geometric structures and asymptotic features of a variety of multiscale problems. The proposed research will have direct impact in several application fields. These algorithms will help us to solve large scale complicated scattering problems on the scales of thousands of wavelengths as in antenna design for wireless communication. We will also better understand wave propagation in composite materials with applications in exploration seismology. On the education side, the development of modern numerical algorithms and softwares requires researchers to understand different aspects of computational mathematics. We plan to use this grant to support two graduate students. This will not only help training a new generation of researchers who master algorithmic design, mathematical analysis, and software development, but also promote the awareness and interests in computational mathematics among undergraduates and underrepresented groups. We will work with researchers from industrial and government laboratories to disseminate ideas and deliver operational softwares for challenging applications.
大多数科学过程及其相关的数学模型在广泛的时间和长度尺度上都有重要的特征。与波的计算有关的一些典型例子是高频波的传播和散射以及波场与复杂介质的相互作用。 直接在最小尺度上离散这些问题并使用标准数值算法求解所得到的系统不可避免地导致具有不可接受的长计算时间和大内存需求的巨大计算问题。基于我们以前在多尺度算法方面的经验,我们计划设计,实现和分析高频波传播和相关领域问题的新算法。这样的问题是具有挑战性的,因为许多众所周知的技术,如多重网格和标准的快速多极方法的效率有限。我们将集中在以下三个主题:(1)高频声和电磁散射,(2)高频波和薛定谔方程的高斯束方法,(3)具有多重重复尺度的复杂介质的均匀化。本计划的研究主题是利用各种多尺度问题的几何结构和渐近特征。这项研究将在多个应用领域产生直接影响。这些算法将有助于我们解决无线通信天线设计中的数千个波长尺度上的大规模复杂散射问题。我们还将更好地了解波在复合材料中的传播及其在勘探地震学中的应用。在教育方面,现代数值算法和软件的发展要求研究人员了解计算数学的不同方面。我们计划用这笔赠款资助两名研究生。这不仅有助于培养掌握算法设计,数学分析和软件开发的新一代研究人员,而且还可以促进本科生和代表性不足的群体对计算数学的认识和兴趣。我们将与来自工业和政府实验室的研究人员合作,传播想法,并为具有挑战性的应用提供操作软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bjorn Engquist其他文献

Optimal transport for elastic source inversion
弹性源反演的最优输运
Homogenization Model for Aberrant Crypt Foci
异常隐窝病灶的均质化模型
  • DOI:
    10.1137/140967660
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Figueiredo;C. Leal;G. Romanazzi;Bjorn Engquist
  • 通讯作者:
    Bjorn Engquist
Model recovery below reflectors by optimal-transport FWI
通过最佳传输 FWI 进行反射器下方的模型恢复
A MULTISCALE METHOD FOR HIGHLY OSCILLATORY ORDINARY DIFFERENTIAL EQUATIONS WITH RESONANCE IN MEMORY OF GERMUND DAHLQUIST
纪念Germund Dahlquist的高振荡常微分方程的多尺度方法
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gil Ariel;Bjorn Engquist;Richard Tsai
  • 通讯作者:
    Richard Tsai
In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol
  • 通讯作者:
    V. Vicol

Bjorn Engquist的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bjorn Engquist', 18)}}的其他基金

Machine Learning for Effective Computation in Multiscale Hyperbolic Systems
用于多尺度双曲系统中有效计算的机器学习
  • 批准号:
    2208504
  • 财政年份:
    2022
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
A New Multiscale Framework for Hyperbolic Problems
双曲线问题的新多尺度框架
  • 批准号:
    1913209
  • 财政年份:
    2019
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Parallel Multiscale Algorithms for Dynamical Systems
动力系统的并行多尺度算法
  • 批准号:
    1620396
  • 财政年份:
    2016
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Multiscale Computations of Time Dependent Highly Oscillatory Systems
瞬态高振荡系统的多尺度计算
  • 批准号:
    1522792
  • 财政年份:
    2015
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Multiscale Computation of Highly Oscillatory Dynamical Systems
高振荡动力系统的多尺度计算
  • 批准号:
    1217203
  • 财政年份:
    2012
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Multiscale Computations of Stiff Oscillatory Ordinary Differential Equations
刚性振荡常微分方程的多尺度计算
  • 批准号:
    0714612
  • 财政年份:
    2007
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Continuing Grant

相似海外基金

High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Study of non-parametric reconstruction algorithms of gravitational wave for real-time detection
实时探测引力波非参数重构算法研究
  • 批准号:
    22KF0329
  • 财政年份:
    2023
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Multi-functional millimeter-wave radios for joint communication and sensing: signal processing algorithms and practical design
用于联合通信和传感的多功能毫米波无线电:信号处理算法和实用设计
  • 批准号:
    RGPIN-2020-06754
  • 财政年份:
    2022
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Bayesian Inversion Algorithms for Wave Propagation
用于波传播的高级贝叶斯反演算法
  • 批准号:
    DP220102243
  • 财政年份:
    2022
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Discovery Projects
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2208164
  • 财政年份:
    2022
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
  • 批准号:
    2106602
  • 财政年份:
    2021
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Continuing Grant
Multi-functional millimeter-wave radios for joint communication and sensing: signal processing algorithms and practical design
用于联合通信和传感的多功能毫米波无线电:信号处理算法和实用设计
  • 批准号:
    RGPIN-2020-06754
  • 财政年份:
    2021
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
  • 批准号:
    2107276
  • 财政年份:
    2021
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Continuing Grant
SWIFT: Transceiver and algorithms for multiband mobile communications in co-existence with passive uses at millimeter wave spectra
SWIFT:用于与毫米波频谱无源使用共存的多频段移动通信的收发器和算法
  • 批准号:
    2127648
  • 财政年份:
    2021
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Standard Grant
Multi-functional millimeter-wave radios for joint communication and sensing: signal processing algorithms and practical design
用于联合通信和传感的多功能毫米波无线电:信号处理算法和实用设计
  • 批准号:
    DGECR-2020-00454
  • 财政年份:
    2020
  • 资助金额:
    $ 27.41万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了