Parallel Multiscale Algorithms for Dynamical Systems
动力系统的并行多尺度算法
基本信息
- 批准号:1620396
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research will open important problem classes for realistic computer simulation on future massively parallel computer architectures. The targeted areas are dynamical phenomena with strong variations in time. Typical processes that will benefit from this improved simulation capability are, for example, molecular dynamics for chemical and biological systems, vibrating mechanical systems, systems biological phenomena, atmospheric flow and seismic wave propagation. The novel computational methods and theoretical understanding will introduce new paradigms in the numerical solutions of challenging dynamical systems with a potential for many future realistic applications. The training of students in these fields is also very important, as they will shape the future of the development of multiscale modeling and high performance computing in academia and industry.Time dependent systems that have highly oscillatory solutions can be found in many important fields of science and engineering, and they present great challenges both in analysis and in scientific computation. A major focus of research activities has been on the development of multiscale methods for such systems that focus on the effective behavior of these systems without resolution of all details. The PIs propose to develop a new framework addressing some of the core problems of scientific computing for the coming years. This will be done in two directions. In one the earlier techniques will be generalized to infinite dimensional oscillatory systems with application to seismic wave propagation. The other direction will exploit next generation massively parallel computer systems. The multiscale models for effective behavior will be used as coarse solvers to resolve important obstacles in the challenging parallel-in-time or parareal computation. The results will facilitate further synergistic advancement in the field of multiscale modeling in general.
拟议的研究将打开现实的计算机模拟未来的大规模并行计算机体系结构的重要问题类。目标区域是具有强烈时间变化的动态现象。将受益于这种改进的模拟能力的典型过程例如是化学和生物系统的分子动力学、振动机械系统、系统生物现象、大气流动和地震波传播。新的计算方法和理论认识将引入新的范式在具有挑战性的动力系统的数值解与许多未来的现实应用的潜力。在这些领域的学生的培训也是非常重要的,因为他们将塑造未来的多尺度建模和高性能计算在学术界和工业界的发展。时间依赖系统,具有高振荡的解决方案,可以在许多重要的科学和工程领域,他们提出了巨大的挑战,无论是在分析和科学计算。研究活动的一个主要重点是发展多尺度方法,这些系统的重点是这些系统的有效行为,而没有解决所有的细节。PI建议开发一个新的框架,解决未来几年科学计算的一些核心问题。这将在两个方向进行。在一个早期的技术将推广到无限维振荡系统与应用地震波传播。另一个方向是开发下一代大规模并行计算机系统。有效行为的多尺度模型将被用作粗略求解器,以解决具有挑战性的时间并行或并行计算中的重要障碍。研究结果将促进多尺度建模领域的进一步协同进步。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Multiscale Domain Decomposition Algorithm for Boundary Value Problems for Eikonal Equations
程函方程边值问题的多尺度域分解算法
- DOI:10.1137/18m1186927
- 发表时间:2019
- 期刊:
- 影响因子:1.6
- 作者:Martin, Lindsay;Tsai, Yen-Hsi R.
- 通讯作者:Tsai, Yen-Hsi R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjorn Engquist其他文献
Optimal transport for elastic source inversion
弹性源反演的最优输运
- DOI:
10.1190/image2023-3916500.1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tyler Masthay;Bjorn Engquist - 通讯作者:
Bjorn Engquist
Homogenization Model for Aberrant Crypt Foci
异常隐窝病灶的均质化模型
- DOI:
10.1137/140967660 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
I. Figueiredo;C. Leal;G. Romanazzi;Bjorn Engquist - 通讯作者:
Bjorn Engquist
Model recovery below reflectors by optimal-transport FWI
通过最佳传输 FWI 进行反射器下方的模型恢复
- DOI:
10.1190/segam2018-2998611.1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yunan Yang;Bjorn Engquist - 通讯作者:
Bjorn Engquist
A MULTISCALE METHOD FOR HIGHLY OSCILLATORY ORDINARY DIFFERENTIAL EQUATIONS WITH RESONANCE IN MEMORY OF GERMUND DAHLQUIST
纪念Germund Dahlquist的高振荡常微分方程的多尺度方法
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Gil Ariel;Bjorn Engquist;Richard Tsai - 通讯作者:
Richard Tsai
In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol - 通讯作者:
V. Vicol
Bjorn Engquist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjorn Engquist', 18)}}的其他基金
Machine Learning for Effective Computation in Multiscale Hyperbolic Systems
用于多尺度双曲系统中有效计算的机器学习
- 批准号:
2208504 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
A New Multiscale Framework for Hyperbolic Problems
双曲线问题的新多尺度框架
- 批准号:
1913209 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multiscale Computations of Time Dependent Highly Oscillatory Systems
瞬态高振荡系统的多尺度计算
- 批准号:
1522792 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multiscale Computation of Highly Oscillatory Dynamical Systems
高振荡动力系统的多尺度计算
- 批准号:
1217203 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multiscale Algorithms for Wave Propagation
波传播的多尺度算法
- 批准号:
1016577 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multiscale Computations of Stiff Oscillatory Ordinary Differential Equations
刚性振荡常微分方程的多尺度计算
- 批准号:
0714612 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
相似海外基金
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Research Grant
CAREER: Efficient and Accurate Local Time-Stepping Algorithms for Multiscale Multiphysics Systems
职业:多尺度多物理系统的高效、准确的局部时间步进算法
- 批准号:
2041884 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Multiscale Algorithms for the Geometric Analysis of Hyperspectral Data
高光谱数据几何分析的多尺度算法
- 批准号:
1720452 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
- 批准号:
1756892 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Rational design of functional porous macromolecular materials: Evolutionary algorithms and multiscale modelling
功能性多孔高分子材料的合理设计:进化算法和多尺度建模
- 批准号:
EP/P005543/1 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Multiscale space-time algorithms and data structures for the simulation of porous media flow.
用于模拟多孔介质流动的多尺度时空算法和数据结构。
- 批准号:
1764342 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Studentship
MULTISCALE STOCHASTIC REACTION-DIFFUSION ALGORITHMS
多尺度随机反应扩散算法
- 批准号:
1620403 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Multiscale Proximity Algorithms for Optimization Problems Arising from Image/Signal Processing
协作研究:图像/信号处理优化问题的多尺度逼近算法
- 批准号:
1522332 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Proximity Algorithms for Optimization Problems Arising from Image/Signal Processing
协作研究:图像/信号处理优化问题的多尺度逼近算法
- 批准号:
1522339 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Efficient Algorithms for Multiscale Electromagnetic Problems
多尺度电磁问题的高效算法
- 批准号:
482875-2015 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




