A New Multiscale Framework for Hyperbolic Problems
双曲线问题的新多尺度框架
基本信息
- 批准号:1913209
- 负责人:
- 金额:$ 44.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the PIs will develop a novel computational framework for building numerical algorithms that are capable of fully utilizing the power of the next generation super computers. By fully using the large scale computing power, these algorithms will be able to perform highly accurate simulations of important physical phenomena involving propagation of different types of waves. These simulations provide important data and information for further decision making.In many physical applications, one typically is interested in computing certain observables and effective properties from the given systems that involve many temporal and length scales. However, the computational complexity required to numerically resolve all the scales in the given system is unfeasible. Multiscale algorithms have been developed to compute the effective properties of systems that have sufficiently wide separation of scales, and certain homogeneity and ergodic properties. As multiscale computation for these classical settings have reached a relatively mature stage, it is now necessary to develop new strategies addressing some of the core problems of scientific computing for the coming era. This project will involve multiscale hyperbolic problems. Hyperbolic problems characteristically support oscillations in the solutions, and phase errors typically dominate the numerical solutions and do not dissipate in time. These properties make accurate long time simulations very difficult. The project will further tackle a harder class of hyperbolic problems in which a wide spectrum of non-negligible scales is present. With the stagnation of processor core performance, parallel computation for these more challenging multiscale problems becomes inevitable. On the other hand, computations of hyperbolic problems will not benefit from the available exa-scale computing power unless parallelization-in-time can be performed, as the speed-up from spatial domain decomposition has saturated. It is widely recognized that robust and convergent numerical computation using such parallel-in-time algorithms still remains a main challenge for hyperbolic problems. The investigators will leverage success of earlier NSF supported research and develop a new multiscale framework that enables stable parallel-in-time computation for multiscale hyperbolic problems. An essential component of the framework involves making up the deficiencies of the typical multiscale models by judiciously utilizing data collected from suitable ensembles of the parallel computations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个项目中,PI将开发一个新的计算框架,用于构建能够充分利用下一代超级计算机的能力的数值算法。通过充分利用大规模计算能力,这些算法将能够对涉及不同类型波传播的重要物理现象进行高度精确的模拟。这些模拟为进一步的决策提供了重要的数据和信息。在许多物理应用中,人们通常对从给定的涉及许多时间和长度尺度的系统中计算某些可观测量和有效性质感兴趣。然而,在给定的系统中,数值解决所有尺度所需的计算复杂性是不可行的。多尺度算法已经被开发用于计算具有足够宽的尺度分离以及一定的齐次性和遍历性的系统的有效性质。由于这些经典环境的多尺度计算已经达到了一个相对成熟的阶段,现在有必要开发新的策略来解决未来时代科学计算的一些核心问题。这个项目将涉及多尺度双曲问题。双曲问题的特点是支持振荡的解决方案,相位误差通常占主导地位的数值解,并不消散的时间。这些特性使得精确的长时间模拟非常困难。该项目将进一步解决一类更难的双曲问题,其中存在广泛的不可忽略的尺度。随着处理器核性能的停滞,这些更具挑战性的多尺度问题的并行计算变得不可避免。另一方面,双曲问题的计算将不会受益于可用的exa规模的计算能力,除非可以执行时间上的并行化,因为空间区域分解的加速已经饱和。人们普遍认为,使用这种时间并行算法的鲁棒和收敛的数值计算仍然是双曲问题的主要挑战。研究人员将利用早期NSF支持的研究的成功,并开发一个新的多尺度框架,为多尺度双曲问题提供稳定的时间并行计算。该框架的一个重要组成部分是通过明智地利用从并行计算的合适集合中收集的数据来弥补典型多尺度模型的不足。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-wall patch representation of wall-bounded turbulence
- DOI:10.1017/jfm.2020.658
- 发表时间:2018-11
- 期刊:
- 影响因子:3.7
- 作者:S. Carney;B. Engquist;R. Moser
- 通讯作者:S. Carney;B. Engquist;R. Moser
Optimal Transport Based Seismic Inversion:Beyond Cycle Skipping
- DOI:10.1002/cpa.21990
- 发表时间:2020-01
- 期刊:
- 影响因子:3
- 作者:Bjorn Engquist;Yunan Yang
- 通讯作者:Bjorn Engquist;Yunan Yang
Effects of resolution inhomogeneity in large-eddy simulation
大涡模拟中分辨率不均匀性的影响
- DOI:10.1103/physrevfluids.6.074604
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Yalla, Gopal R.;Oliver, Todd A.;Haering, Sigfried W.;Engquist, Björn;Moser, Robert D.
- 通讯作者:Moser, Robert D.
Corrected trapezoidal rules for singular implicit boundary integrals
奇异隐式边界积分的修正梯形规则
- DOI:10.1016/j.jcp.2022.111193
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Izzo, Federico;Runborg, Olof;Tsai, Richard
- 通讯作者:Tsai, Richard
A stable parareal-like method for the second order wave equation
- DOI:10.1016/j.jcp.2019.109156
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Hieu Nguyen;R. Tsai
- 通讯作者:Hieu Nguyen;R. Tsai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjorn Engquist其他文献
Optimal transport for elastic source inversion
弹性源反演的最优输运
- DOI:
10.1190/image2023-3916500.1 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tyler Masthay;Bjorn Engquist - 通讯作者:
Bjorn Engquist
Homogenization Model for Aberrant Crypt Foci
异常隐窝病灶的均质化模型
- DOI:
10.1137/140967660 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
I. Figueiredo;C. Leal;G. Romanazzi;Bjorn Engquist - 通讯作者:
Bjorn Engquist
Model recovery below reflectors by optimal-transport FWI
通过最佳传输 FWI 进行反射器下方的模型恢复
- DOI:
10.1190/segam2018-2998611.1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yunan Yang;Bjorn Engquist - 通讯作者:
Bjorn Engquist
A MULTISCALE METHOD FOR HIGHLY OSCILLATORY ORDINARY DIFFERENTIAL EQUATIONS WITH RESONANCE IN MEMORY OF GERMUND DAHLQUIST
纪念Germund Dahlquist的高振荡常微分方程的多尺度方法
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Gil Ariel;Bjorn Engquist;Richard Tsai - 通讯作者:
Richard Tsai
In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol - 通讯作者:
V. Vicol
Bjorn Engquist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjorn Engquist', 18)}}的其他基金
Machine Learning for Effective Computation in Multiscale Hyperbolic Systems
用于多尺度双曲系统中有效计算的机器学习
- 批准号:
2208504 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Parallel Multiscale Algorithms for Dynamical Systems
动力系统的并行多尺度算法
- 批准号:
1620396 - 财政年份:2016
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Multiscale Computations of Time Dependent Highly Oscillatory Systems
瞬态高振荡系统的多尺度计算
- 批准号:
1522792 - 财政年份:2015
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Multiscale Computation of Highly Oscillatory Dynamical Systems
高振荡动力系统的多尺度计算
- 批准号:
1217203 - 财政年份:2012
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Multiscale Algorithms for Wave Propagation
波传播的多尺度算法
- 批准号:
1016577 - 财政年份:2010
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Multiscale Computations of Stiff Oscillatory Ordinary Differential Equations
刚性振荡常微分方程的多尺度计算
- 批准号:
0714612 - 财政年份:2007
- 资助金额:
$ 44.49万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Towards a Comprehensive Theoretical Framework to Predict Multiscale and Multicomponent Electrolyte Transport in Porous Media
职业:建立一个预测多孔介质中多尺度和多组分电解质传输的综合理论框架
- 批准号:
2238412 - 财政年份:2023
- 资助金额:
$ 44.49万 - 项目类别:
Continuing Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
- 批准号:
2238859 - 财政年份:2023
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
- 批准号:
2331482 - 财政年份:2023
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
- 批准号:
2132336 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
CAREER: A scalable multiscale modeling framework to explore soot formation in reacting flows
职业:一个可扩展的多尺度建模框架,用于探索反应流中烟灰的形成
- 批准号:
2144290 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Continuing Grant
Collaborative Research: A New Multiscale Framework for Integrating Socio-Economic Processes, Vector-Borne Disease Control, and the Impact of Transient Events
合作研究:整合社会经济过程、媒介传播疾病控制和瞬态事件影响的新多尺度框架
- 批准号:
2151871 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
ERI: Modeling Bacterial Microcompartment Assembly Using a Data-Driven Multiscale Framework
ERI:使用数据驱动的多尺度框架对细菌微区室组装进行建模
- 批准号:
2138620 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
Collaborative Research: A New Multiscale Framework for Integrating Socio-Economic Processes, Vector-Borne Disease Control, and the Impact of Transient Events
合作研究:整合社会经济过程、媒介传播疾病控制和瞬态事件影响的新多尺度框架
- 批准号:
2151870 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Continuing Grant
Collaborative Research: A New Multiscale Framework for Integrating Socio-Economic Processes, Vector-Borne Disease Control, and the Impact of Transient Events
合作研究:整合社会经济过程、媒介传播疾病控制和瞬态事件影响的新多尺度框架
- 批准号:
2151872 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Standard Grant
A predictive multiscale numerical framework for emulsion flow
乳液流动的预测多尺度数值框架
- 批准号:
RGPIN-2016-04098 - 财政年份:2022
- 资助金额:
$ 44.49万 - 项目类别:
Discovery Grants Program - Individual