III:Small:Enabling Technology for Best-Effort Data Integration Systems

III:小型:尽力而为数据集成系统的支持技术

基本信息

  • 批准号:
    1018792
  • 负责人:
  • 金额:
    $ 49.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Over the past few decades, the problem of data integration (DI) has received significant attention. Much of the initial attention was directed at integrating business data. Such data typically requires exact integration, because anything less is clearly not usable. Today, such exact DI systems continue to play an important role. But they are ill-suited for many emerging domains, such as personal information management, building Web community portals, scientific data management, text management for business intelligence, public safety, and military intelligence analysis. First, they are typically constructed in ``one shot'' in that the system is substantially unusable until it is completed in all of its envisioned generality. Second, when presented with new data, these systems often incur long delays before making the data available to users. Third, they typically are not designed to benefit from user feedback, even though opportunities for such feedback often exist in today's Web 2.0 world. Fourth, exact DI systems provide little or no assistance in explaining answers to users. In response, this project explores a paradigm shift, from precise DI systems to best-effort ones. Instead of being constructed in one shot, these systems are constructed incrementally. Their data is always queryable some fashion. They tolerate mistakes in the data, and can leverage user feedback to improve over time. Finally, they can explain their answers to the users, thereby allowing them to understand, verify, and trust query results.To build best-effort DI systems, researchers will pursue the following technical thrusts. (1)Increasing support for incremental development through the specification and implementation of a declarative, semantically transparent extraction/integration language, together with an effective optimization and execution framework. (2) Leveraging the power of a user community through the design and implementation of techniques that allow users to correct errors in the extraction/integration process as they are encountered, that consistently propagates these corrections throughout the extracted and integrated data, and that use these corrections to improve the quality of extraction/integration modules. (3) Developing and implementing techniques to capture information that will help users reason about the system's data along with support for exploring the implications of this information. The team will combine the technology to build a prototype end-to-end best-effort DI system and evaluate the system on three real-world applications: the DBLife portal, the GLEON limnology project, and the madison.com Web portal.This research will be integrated with ongoing efforts in educating students on techniques for extracting and integrating structured data. Inclusion of underrepresented minorities in the projects will be continued. The results from this project will be incorporated into a textbook on data integration to be published in 2010-2011. The project will facilitate the widespread deployment of data integration systems, thus resulting in more effective information management and access for society. It will play an integral part in educating next-generation professional workers and researchers. The research will also help domain scientists in limnology in the context of the GLEON project. It also has the potential to help the developers of madison.com build a system of much greater use to the greater Madison community. Finally, data and system artifacts from the project will be disseminated broadly in the research community to significantly enhance the data management infrastructure for research and education.
在过去的几十年里,数据集成(DI)问题受到了广泛的关注。最初的注意力主要集中在集成业务数据上。这样的数据通常需要精确的集成,否则显然是不可用的。今天,这种精确的直接注入系统继续发挥重要作用。但是它们不适用于许多新兴领域,例如个人信息管理、构建Web社区门户、科学数据管理、用于商业智能的文本管理、公共安全和军事情报分析。首先,它们通常是在“一次性”中构建的,即系统在完成其所有设想的一般性之前基本上是不可用的。其次,当提供新数据时,这些系统在向用户提供数据之前通常会产生长时间的延迟。第三,它们通常不是为了从用户反馈中获益而设计的,尽管在当今的Web 2.0世界中经常存在这样的反馈机会。第四,精确的直接注入系统在向用户解释答案方面提供很少或根本没有帮助。为此,本项目探索了一种范式转变,即从精确的直接注入系统到尽力而为的系统。这些系统不是一次性构建,而是增量构建。他们的数据总是可以以某种方式查询。他们容忍数据中的错误,并可以利用用户反馈来改进。最后,他们可以向用户解释他们的答案,从而让用户理解、验证和信任查询结果。为了构建最佳DI系统,研究人员将追求以下技术重点。(1)通过声明性、语义透明的提取/集成语言的规范和实现,以及有效的优化和执行框架,增加对增量开发的支持。(2)通过设计和实现允许用户纠正提取/集成过程中遇到的错误的技术,利用用户社区的力量,在整个提取和集成数据中始终如一地传播这些纠正,并使用这些纠正来提高提取/集成模块的质量。(3)开发和实现捕获信息的技术,这些信息将帮助用户对系统数据进行推理,并支持探索这些信息的含义。该团队将结合该技术构建一个端到端的最佳DI系统原型,并在三个实际应用中评估该系统:DBLife门户、GLEON湖沼学项目和madison.com Web门户。这项研究将与教育学生提取和整合结构化数据技术的持续努力相结合。将继续将代表性不足的少数民族纳入项目。该项目的成果将被纳入将于2010-2011年出版的关于数据整合的教科书。该项目将促进数据集成系统的广泛部署,从而为社会带来更有效的信息管理和获取。它将在培养下一代专业工作者和研究人员方面发挥不可或缺的作用。这项研究还将在GLEON项目的背景下帮助湖泊学领域的科学家。它也有潜力帮助madison.com的开发者建立一个对更大的麦迪逊社区更有用的系统。最后,该项目的数据和系统工件将在研究界广泛传播,以显着增强研究和教育的数据管理基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AnHai Doan其他文献

AnHai Doan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AnHai Doan', 18)}}的其他基金

III: Medium: Enabling Technologies for 21st Century Entity Matching Applications
III:媒介:21 世纪实体匹配应用的支持技术
  • 批准号:
    1564282
  • 财政年份:
    2016
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant
EAGER: Discovering Emerging Events in Social Media
EAGER:发现社交媒体中的新兴事件
  • 批准号:
    1143807
  • 财政年份:
    2011
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant
CAREER: Evolving and Self-Managing Data Integration Systems
职业:不断发展和自我管理的数据集成系统
  • 批准号:
    0712836
  • 财政年份:
    2006
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant
CAREER: Evolving and Self-Managing Data Integration Systems
职业:不断发展和自我管理的数据集成系统
  • 批准号:
    0347903
  • 财政年份:
    2004
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CSR: Small: Cross-Layer Solutions Enabling Instant Computing for Edge Intelligence Devices
CSR:小:跨层解决方案为边缘智能设备提供即时计算
  • 批准号:
    2247156
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
  • 批准号:
    2346726
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
  • 批准号:
    2247722
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Integrating Application Agnostic Learning with FABRIC for Enabling Realistic High-Fidelity Traffic Generation and Modeling
CC* Integration-Small:将应用程序无关学习与 FABRIC 集成,以实现现实的高保真流量生成和建模
  • 批准号:
    2419070
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
NeTS: Small: Enabling Long-Range Underwater Backscatter via Van-Atta Acoustic Networks
NetS:小型:通过 Van-Atta 声学网络实现远距离水下反向散射
  • 批准号:
    2308901
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CAS: Enabling Synthesis through Small Molecule Liberation
CAS:通过小分子解放实现合成
  • 批准号:
    2247708
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
  • 批准号:
    2247721
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322191
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322190
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了