Structural Studies of Tetrahymena Telomerase

四膜虫端粒酶的结构研究

基本信息

  • 批准号:
    1022379
  • 负责人:
  • 金额:
    $ 124.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Intellectual Merit Telomerase is a large, multi-subunit ribonucleoprotein (RNP) complex that plays an essential role in maintenance of telomere DNA at the ends of linear chromosomes in eukaryotes. Telomerases from all species contain an essential RNA component (telomerase RNA, TER), a unique reverse transcriptase protein (telomerase reverse transcriptase, TERT), and various accessory proteins which together are required for assembly, accumulation, localization, telomere repeat addition proccessivity, and catalysis. The telomere repeat sequence, TTGGGG in Tetrahymena and TTAGGG in vertebrates, is synthesized on an RNA template contained in the TER. Telomerase has been the focus of intense study due to its role in preventing chromosomal instability. Due to the low abundance of telomerase in most organisms, it has been difficult to isolate the intact holoenzyme, and the roles of identified protein and RNA components in RNP processing, assembly, and function have only been partially characterized. In spite of the enormous interest in telomerase, to date there are no structures of any RNA-protein complexes of telomerase. The earliest studies on telomerase were done on ciliates, which have many more telomeres and therefore more telomerase than other organisms. The discovery of telomerase in Tetrahymena led to the 2009 Nobel Prize to Elizabeth Blackburn, Carol Greider, and Jack Szostak. Telomerase activity can be reconstituted in vitro from TER and TERT alone, but other proteins are required for function in vivo. The Tetrahymena telomerase holoenzyme has been purified and protein components identified using affinity chromatography from Tetrahymena strains containing affinity tagged TERT. Among these is the holoenzyme assembly protein p65, which together with TERT and TER comprises the catalytic core of Tetrahymena telomerase and is required in vivo for assembly of these components of the holoenzyme. This project focuses on understanding Tetrahymena telomerase holoenzyme assembly and structure, including the role of p65 in Tetrahymena telomerase assembly. NMR, chemical probing, and X-ray crystallography will be used to investigate protein and RNA interactions, and cryoelectron microcroscopy will be used to investigate the overall structure of the Tetrahymena telomerase holoenzyme. The long-range goal is to combine information from solution and crystal structures of components of Tetrahymena telomerase with cryoelectron microscopy images to obtain a detailed understanding of the architecture, assembly and dynamics of this essential macromolecular machine. This work should lead to fundamental new insights into how telomerase functions to regulate telomere length, and ultimately to how changes in telomerase activity affect both cell proliferation and cellular aging. Broader Impacts The structural studies of Tetrahymena telomerase will integrate existing information on the cellular function and biochemistry of this important enzyme complex, and provide new insights into the RNA folding, tertiary structure, role in catalysis, protein and holoenzyme structure, and assembly of the telomerase RNP. As such, this project will impact biology across the full breadth of science. These projects provide essential training for undergraduate and graduate students and postdoctoral fellows in structural biology and biophysics of nucleic acids and nucleic acid-protein complexes. This is an area in which women and minorities have long been underrepresented, and this lab provides a role model for them. As an example of the long-range impact of this work in terms of education, several postdoctoral fellows who have worked on NSF projects in the Feigon lab have gone on to faculty positions. Undergraduate students who have worked on these projects have gone on to graduate school. Another important example of the long-range impact of this work in terms of education is that results from the previous NSF funding cycle have already been published as figures and discussion in two biochemistry and structural biology textbooks. Lessons in structural biology are also incorporated into honors undergraduate biochemistry classes by having the students make a web-based CHIME (utilizing html and rasmol) structural demonstration of a nucleic acid or a nucleic acid-protein complex. These and some simpler CHIME demos (available on the Feigon lab web page and Virtual Office Hours) can be used as structure teaching tools by faculty for undergraduate and graduate biochemistry core courses, including teaching about telomerase. Future plans also include outreach to local high school students through programs in the California Nanosystems Institute at UCLA.
端粒酶是一种大的、多亚基的核糖核蛋白(RNP)复合物,在真核生物线性染色体末端的端粒DNA的维持中起重要作用。来自所有物种的端粒酶含有必需的RNA组分(端粒酶RNA,TER)、独特的逆转录酶蛋白(端粒酶逆转录酶,TERT)和各种辅助蛋白,它们一起是装配、积累、定位、端粒重复添加持续性和催化所需的。端粒重复序列,四膜虫中的TTGGGG和脊椎动物中的TTAGGG,在TER中包含的RNA模板上合成。端粒酶因其在防止染色体不稳定中的作用而成为研究的热点。由于端粒酶在大多数生物体中的丰度较低,因此很难分离出完整的全酶,并且所鉴定的蛋白质和RNA组分在RNP加工、组装和功能中的作用仅得到部分表征。尽管人们对端粒酶有着极大的兴趣,但迄今为止还没有端粒酶的任何RNA-蛋白质复合物的结构。最早的端粒酶研究是在纤毛虫身上进行的,纤毛虫有更多的端粒,因此比其他生物体有更多的端粒酶。四膜虫端粒酶的发现使伊丽莎白·布莱克本(Elizabeth Blackburn)、卡罗尔·格雷德(Carol Greider)和杰克·绍斯塔克(Jack Szostak)获得2009年诺贝尔奖。端粒酶活性可以在体外由单独的TER和TERT重建,但体内功能需要其他蛋白质。四膜虫端粒酶全酶已被纯化,并使用亲和色谱法从含有亲和标记的TERT的四膜虫菌株中鉴定蛋白组分。其中包括全酶组装蛋白p65,其与TERT和TER一起构成四膜虫端粒酶的催化核心,并且是体内组装全酶的这些组分所需的。本项目主要研究四膜虫端粒酶全酶的组装和结构,包括p65在四膜虫端粒酶组装中的作用。核磁共振,化学探测和X射线晶体学将用于研究蛋白质和RNA的相互作用,和冷冻电子显微镜将用于研究四膜虫端粒酶全酶的整体结构。长期目标是将来自四膜虫端粒酶组分的溶液和晶体结构的信息与冷冻电子显微镜图像联合收割机结合,以详细了解这种基本大分子机器的结构、组装和动力学。这项工作将导致对端粒酶如何调节端粒长度的基本新见解,并最终导致端粒酶活性的变化如何影响细胞增殖和细胞衰老。四膜虫端粒酶的结构研究将整合这一重要酶复合物的细胞功能和生物化学方面的现有信息,并为RNA折叠、三级结构、催化作用、蛋白质和全酶结构以及端粒酶RNP的组装提供新的见解。因此,该项目将影响整个科学领域的生物学。这些项目为本科生、研究生和博士后研究员提供核酸和核酸-蛋白质复合物的结构生物学和生物物理学方面的基本培训。这是一个妇女和少数民族长期以来代表性不足的领域,这个实验室为他们提供了一个榜样。作为这项工作在教育方面的长期影响的一个例子,几个在Feigon实验室从事NSF项目的博士后研究员已经进入教职。从事这些项目的本科生已经进入研究生院。这项工作在教育方面的长期影响的另一个重要例子是,来自先前NSF资助周期的结果已经在两本生物化学和结构生物学教科书中作为数字和讨论发表。结构生物学课程也被纳入荣誉本科生生物化学课程,让学生进行基于网络的CHIME(利用html和rasmol)核酸或核酸-蛋白质复合物的结构演示。这些和一些更简单的CHIME演示(可在Feigon实验室网页和虚拟办公时间上获得)可用作本科和研究生生物化学核心课程教师的结构教学工具,包括端粒酶教学。未来的计划还包括通过加州大学洛杉矶分校的加州纳米系统研究所的项目向当地高中生推广。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juli Feigon其他文献

How short peptides disassemble tau fibrils in Alzheimer’s disease
短肽如何在阿尔茨海默病中分解 tau 纤维
  • DOI:
    10.1038/s41586-025-09244-z
  • 发表时间:
    2025-07-09
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Ke Hou;Peng Ge;Michael R. Sawaya;Liisa Lutter;Joshua L. Dolinsky;Yuan Yang;Yi Xiao Jiang;David R. Boyer;Xinyi Cheng;Justin Pi;Jeffrey Zhang;Jiahui Lu;Romany Abskharon;Shixin Yang;Zhiheng Yu;Juli Feigon;David S. Eisenberg
  • 通讯作者:
    David S. Eisenberg
Structural Basis of 7SK RNA 5′-Gamma-Phosphate Methylation and Retention by MePCE
  • DOI:
    10.1016/j.bpj.2019.11.580
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Yuan Yang;Catherine D. Eichhorn;Yaqiang Wang;Duilio Cascio;Juli Feigon
  • 通讯作者:
    Juli Feigon
In Memoriam: Professor Vladimír Sklenář (April 16, 1951 – April 13, 2024)
  • DOI:
    10.1016/j.jmr.2024.107784
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ad Bax;Juli Feigon
  • 通讯作者:
    Juli Feigon
A (Scientific) Lifetime Affair With Nucleic Acids
与核酸的(科学)终身事务
  • DOI:
    10.1016/j.jmb.2025.169088
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Juli Feigon
  • 通讯作者:
    Juli Feigon
Triple-strand formation in the homopurine:homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4
在同嘌呤:同嘧啶 DNA 寡核苷酸 d(G-A)4 和 d(T-C)4 中三链体的形成
  • DOI:
    10.1038/339637a0
  • 发表时间:
    1989-06-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Ponni Rajagopal;Juli Feigon
  • 通讯作者:
    Juli Feigon

Juli Feigon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juli Feigon', 18)}}的其他基金

Structural Biology of Tetrahymena Telomerase Interactions at Telomeres
四膜虫端粒酶在端粒相互作用的结构生物学
  • 批准号:
    2016540
  • 财政年份:
    2020
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Standard Grant
Structure and Function of Telomerase Proteins
端粒酶蛋白的结构和功能
  • 批准号:
    1517625
  • 财政年份:
    2015
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Standard Grant
NMR Studies of Tetrahymena Telomerase RNA
四膜虫端粒酶 RNA 的 NMR 研究
  • 批准号:
    0517700
  • 财政年份:
    2005
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Continuing Grant
NMR Studies of RNA Enzymes
RNA 酶的 NMR 研究
  • 批准号:
    0111060
  • 财政年份:
    2001
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Continuing Grant
NMR Studies of RNA Enzymes and Aptamers
RNA 酶和适体的 NMR 研究
  • 批准号:
    9808072
  • 财政年份:
    1998
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Standard Grant
NMR Studies of RNA Aptamers for Biological CoFactors
生物辅因子 RNA 适体的 NMR 研究
  • 批准号:
    9506913
  • 财政年份:
    1995
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Continuing Grant
Console Upgrade for 500MHz NMR Spectrometer
500MHz NMR 波谱仪控制台升级
  • 批准号:
    9115862
  • 财政年份:
    1992
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award: Role of Nucleic Acid Conformation in Genetic Regulation
总统青年研究员奖:核酸构象在遗传调控中的作用
  • 批准号:
    8958280
  • 财政年份:
    1989
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Continuing Grant

相似海外基金

NMR Studies of Tetrahymena Telomerase RNA
四膜虫端粒酶 RNA 的 NMR 研究
  • 批准号:
    0517700
  • 财政年份:
    2005
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Continuing Grant
Studies on multifunctional Properties of Tetrahymena citrate synthase
四膜虫柠檬酸合酶多功能特性的研究
  • 批准号:
    09440275
  • 财政年份:
    1997
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on the molecular mechanism of cell division using cell-division-arrest mutants in Tetrahymena
利用四膜虫细胞分裂阻滞突变体研究细胞分裂的分子机制
  • 批准号:
    60480017
  • 财政年份:
    1985
  • 资助金额:
    $ 124.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
STUDIES ON THE GENETIC ORGANIZATION OF TETRAHYMENA
四膜虫遗传组织的研究
  • 批准号:
    3275090
  • 财政年份:
    1980
  • 资助金额:
    $ 124.9万
  • 项目类别:
STUDIES ON THE GENETIC ORGANIZATION OF TETRAHYMENA
四膜虫遗传组织的研究
  • 批准号:
    3275091
  • 财政年份:
    1980
  • 资助金额:
    $ 124.9万
  • 项目类别:
STUDIES ON THE GENETIC ORGANIZATION OF TETRAHYMENA
四膜虫遗传组织的研究
  • 批准号:
    3275089
  • 财政年份:
    1980
  • 资助金额:
    $ 124.9万
  • 项目类别:
GENETIC STUDIES WITH TETRAHYMENA
四膜虫的遗传学研究
  • 批准号:
    3267966
  • 财政年份:
    1976
  • 资助金额:
    $ 124.9万
  • 项目类别:
GENETIC STUDIES WITH TETRAHYMENA
四膜虫的遗传学研究
  • 批准号:
    3267969
  • 财政年份:
    1976
  • 资助金额:
    $ 124.9万
  • 项目类别:
GENETIC STUDIES WITH TETRAHYMENA
四膜虫的遗传学研究
  • 批准号:
    3267964
  • 财政年份:
    1976
  • 资助金额:
    $ 124.9万
  • 项目类别:
GENETIC STUDIES WITH TETRAHYMENA
四膜虫的遗传学研究
  • 批准号:
    3267967
  • 财政年份:
    1976
  • 资助金额:
    $ 124.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了