Collaborative: Mixed Anion and Cation Based Transistor Architecture for Ultra-Low Power Complementary Logic Applications

协作:用于超低功耗互补逻辑应用的混合阴离子和阳离子晶体管架构

基本信息

  • 批准号:
    1028807
  • 负责人:
  • 金额:
    $ 24.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

Research objectives and approaches: The objective of this research is materials, device and circuit based co-exploration of mixed-anion and mixed-cation compound semiconductor based transistors for energy-efficient computing. The approach is a) experimental investigation of n-channel mixed anion (InAsxSb1-x) quantum-well transistors and p-channel mixed cation (InyGa1-ySb) transistors to address dynamic power consumption in complementary logic and RF circuits; b) experimental investigation of mixed-anion and cation based tunnel transistors to address stand-by power consumption in logic and embedded memory circuits, and c) development of design toolkit to enable heterogeneous circuit implementation with emerging devices. Intellectual merit: The key scientific merits of this proposal are: i) Harnessing the excellent electron and hole transport properties in mixed-anion and mixed-cation antimonide material system to provide ultra-low power transistor solutions. We investigate mixed-anion material, InAsxSb1-x with varying As and Sb mole fraction, to achieve high electron mobility (13,000 cm2V-1s-1) to demonstrate n-channel quantum-well FETs (QWFETs). We explore mixed-cation materials, InyGa1-ySb to maximize hole mobility (2,000 cm2V-1s-1) by varying In and Ga mole fractions to enable band-gap engineered p-channel QWFETs; Device layer design is done with the primary goal of achieving a common high-k dielectric gate solution for both n-channel and p-channel QWFETs; ii) Harnessing the availability and tunability of staggered band-edge lineup in the mixed anion-cation antimonide material system to explore tunnel transistor (TFET) architecture with steep switching characteristics to address stand-by energy consumption; iii) Exploration of a heterogeneous system via implementation of speed critical, high activity logic circuits using QWFETs and low activity factor circuits using Tunnel FETs. This investigation will expand our fundamental understanding of the material science of mixed-anion and mixed-cation based material systems, novel QWFET and TFET device configurations and implementation of energy efficient logic elements, interconnect fabric and embedded memory. Broader Impact: The proposed research directly addresses the quest in the semiconductor industry for longer term solutions to technology scaling and addressing energy efficiency. The outcome of this research will have a direct impact on the future of ?green? nanoelectronics and many-core processor architecture design. A broader impact of successful development of the underlying materials, novel device architectures and energy efficient circuits with several orders of magnitude reduced energy consumption than today?s available electronics can usher in a new generation of implantable medical electronics needed for health monitoring and nanomedicine applications. Throughout the project, the key results will be disseminated via a dedicated WIKI web portal and via existing Penn State MRSEC-related outreach channels.
研究目标和方法:本研究的目标是基于材料、器件和电路的混合阴离子和混合阳离子化合物半导体晶体管的节能计算的共同探索。该方法是a)实验研究n通道混合阴离子(inasxs_1 -x)量子阱晶体管和p通道混合阳离子(InyGa1-ySb)晶体管,以解决互补逻辑和射频电路中的动态功耗问题;B)对基于阴离子和阳离子的混合隧道晶体管进行实验研究,以解决逻辑和嵌入式存储电路中的待机功耗问题;c)开发设计工具包,使新兴器件能够实现异构电路。智力优势:本提案的主要科学优点是:i)利用混合阴离子和混合阳离子锑化材料体系中优异的电子和空穴输运特性,提供超低功耗晶体管解决方案。我们研究了具有不同As和Sb摩尔分数的混合阴离子材料InAsxSb1-x,以实现高电子迁移率(13,000 cm2V-1s-1)来演示n通道量子阱场效应管(qwfet)。我们探索混合阳离子材料InyGa1-ySb,通过改变In和Ga的摩尔分数来最大化空穴迁移率(2,000 cm2V-1s-1),从而实现带隙工程p沟道qwfet;器件层设计的主要目标是为n沟道和p沟道qwfet实现通用的高k介电栅极解决方案;ii)利用混合阴离子-阳离子锑化材料体系中交错带边阵容的可用性和可调性,探索具有陡峭开关特性的隧道晶体管(TFET)架构,以解决待机能耗问题;iii)通过使用qwfet实现速度关键、高活度逻辑电路和使用隧道fet实现低活度因数电路来探索异构系统。这项研究将扩展我们对混合阴离子和混合阳离子基材料系统,新型QWFET和TFET器件配置以及节能逻辑元件,互连结构和嵌入式存储器的材料科学的基本理解。更广泛的影响:拟议的研究直接解决了半导体行业对技术扩展和解决能源效率的长期解决方案的追求。这项研究的结果将直接影响到绿色环保的未来。纳米电子学与多核处理器架构设计。基础材料、新型器件架构和节能电路的成功开发产生的更广泛的影响,其能耗比今天降低了几个数量级?现有的电子设备可以引领健康监测和纳米医学应用所需的新一代植入式医疗电子设备。在整个项目中,关键结果将通过专门的WIKI门户网站和现有的宾夕法尼亚州立大学mrsec相关的外展渠道进行传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suman Datta其他文献

Design of Nonvolatile SRAM with Ferroelectric FETs for Energy-Efficient Backup and Restore
用于节能备份和恢复的具有铁电 FET 的非易失性 SRAM 设计
  • DOI:
    10.1109/ted.2017.2707664
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xueqing Li;Kaisheng Ma;Sumitha George;Win-San Khwa;John Sampson;Sumeet Gupta;Yongpan Liu;Meng-Fan Chang;Suman Datta;Vijaykrishnan Narayanan
  • 通讯作者:
    Vijaykrishnan Narayanan
26.5 Terahertz electrically triggered RF switch on epitaxial VO2-on-Sapphire (VOS) wafer
蓝宝石外延 VO2 (VOS) 晶圆上的 26.5 太赫兹电触发射频开关
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Madan;H. Zhang;M. Jerry;Debangshu Mukherjee;Nasim Alem;Roman Engel;Suman Datta
  • 通讯作者:
    Suman Datta
Ten nanometre CMOS logic technology
十纳米互补金属氧化物半导体逻辑技术
  • DOI:
    10.1038/s41928-018-0137-6
  • 发表时间:
    2018-09-13
  • 期刊:
  • 影响因子:
    40.900
  • 作者:
    Suman Datta
  • 通讯作者:
    Suman Datta
Advancing Nonvolatile Computing With Nonvolatile NCFET Latches and Flip-Flops
利用非易失性 NCFET 锁存器和触发器推进非易失性计算
  • DOI:
    10.1109/tcsi.2017.2702741
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Xueqing Li;Sumitha George;Kaisheng Ma;Wei-Yu Tsai;Ahmedullah Aziz;John Sampson;Sumeet Kumar Gupta;Meng-Fan Chang;Yongpan Liu;Suman Datta;Vijaykrishnan Narayanan
  • 通讯作者:
    Vijaykrishnan Narayanan
Amorphous Ta<sub>2</sub>SnO<sub>6</sub>: A hole-dopable <em>p</em>-type oxide
  • DOI:
    10.1016/j.apsusc.2022.155981
  • 发表时间:
    2023-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yaoqiao Hu;Darrell Schlom;Suman Datta;Kyeongjae Cho
  • 通讯作者:
    Kyeongjae Cho

Suman Datta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suman Datta', 18)}}的其他基金

Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324175
  • 财政年份:
    2023
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Standard Grant
E2CDA: Type I: EXtremely Energy Efficient Collective ELectronics (EXCEL)
E2CDA:I 型:极其节能的集体电子 (EXCEL)
  • 批准号:
    1640081
  • 财政年份:
    2016
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
  • 批准号:
    82302303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Active control of ion diffusion dynamics at the electrolyte/electrode interface by utilizing mixed anion surface
利用混合阴离子表面主动控制电解质/电极界面的离子扩散动力学
  • 批准号:
    23KK0104
  • 财政年份:
    2023
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Crystallography of disorder in mixed-anion materials
混合阴离子材料无序的晶体学
  • 批准号:
    2807474
  • 财政年份:
    2023
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Studentship
Effect of topochemical mixed anion control on apical site and improvement in physical properties of multi-layer type high Tc superconducting film
拓扑化学混合阴离子控制对多层型高温超导薄膜顶端位点的影响及物理性能的改善
  • 批准号:
    22K04192
  • 财政年份:
    2022
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis of mixed anion compounds by using metal hydroxide nanoparticles
利用金属氢氧化物纳米颗粒合成混合阴离子化合物
  • 批准号:
    22K14753
  • 财政年份:
    2022
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improvement of anion adsorption capacity by controlling the crystallinity of the ternary mixed hydrous oxides
通过控制三元混合水合氧化物的结晶度提高阴离子吸附能力
  • 批准号:
    21K12293
  • 财政年份:
    2021
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of conductivity of mixed anion compounds through distortion of coordination and their device application
通过配位畸变控制混合阴离子化合物的电导率及其器件应用
  • 批准号:
    21H01795
  • 财政年份:
    2021
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of fast-decay red phosphor using mixed-anion compounds
使用混合阴离子化合物研究快速衰减红色荧光粉
  • 批准号:
    20K15032
  • 财政年份:
    2020
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploiting the anion Chemistry of solids for Future Advanced Functional Materials: Core-to-Core Project on Mixed Anion Research for Energy Conversion
利用固体阴离子化学用于未来先进功能材料:混合阴离子能量转换研究的核心到核心项目
  • 批准号:
    EP/T027991/1
  • 财政年份:
    2020
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Research Grant
Research and development of mixed-anion compounds as efficient oxygen evolution electrocatalysts
混合阴离子化合物高效析氧电催化剂的研究与开发
  • 批准号:
    19K15678
  • 财政年份:
    2019
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ionic control of mixed-anion compounds and reduced oxides using electric field
利用电场对混合阴离子化合物和还原氧化物进行离子控制
  • 批准号:
    19F19334
  • 财政年份:
    2019
  • 资助金额:
    $ 24.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了