Reliability-Based Predictions of Extreme and Fatigue Responses of Utility-Scale Wind Turbines through Advanced Modeling and Simulations

通过高级建模和仿真对公用事业规模风力涡轮机的极端和疲劳响应进行基于可靠性的预测

基本信息

  • 批准号:
    1029922
  • 负责人:
  • 金额:
    $ 24.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to develop advanced modeling and simulation approaches for accurately quantifying extreme and fatigue responses of utility-scale wind turbines. The rapidly evolving wind turbine technology currently faces many technical challenges in its trouble-free operations. Breakdowns of large wind turbine due to extreme loading conditions and fatigue failures are common place as these extreme conditions cannot be accurately predicted with the existing approaches. Three specific research objectives of the project are to develop: 1) efficient extrapolation methods and numerical frameworks for simulating extreme responses for turbines under operational and parked conditions; 2) response combination schemes for calculating the extreme responses for turbine designs; and 3) a methodology to include the non-Gaussian wind characteristics that can occur on some sites in extreme response calculating methods. Various possible wind occurrence scenarios will be considered to provide data for performance-based designs of turbines with enhanced reliabilities. The numerical framework developed in this project will permit the calculation of the design responses and data for fatigue failure estimations considering the extreme turbine response conditions. The findings of this project will result in improved designs of wind turbines with reduced risk and enhanced efficiency for energy generation. This project will help to improve current turbine design standards and state-of-the-art tools for assessing turbine performance under various wind conditions. The advanced modeling and simulation tools for land-based turbines developed in this project can be also applied to offshore wind turbines by further incorporating the effects of hydrodynamic interactions. U.S. turbine firms will be able to use these tools to optimize turbine performance to enhance their competitiveness in the domestic and global wind energy markets. The research results and findings can also be adopted for reliability analysis and design of other structural systems under extreme dynamic loadings. The educational and outreach activities include the establishment of a novel portable bench-scale instructional wind tunnel testing program that is expected to effectively enhance classroom education in aerodynamics and wind engineering and will be beneficial for many universities. The project will also provide advanced education and training to graduate and undergraduate students involved in the project.
该奖项的研究目标是开发先进的建模和仿真方法,以准确量化公用事业规模风力涡轮机的极端和疲劳响应。快速发展的风力发电技术在实现无故障运行方面面临着诸多技术挑战。大型风力发电机由于极端载荷和疲劳失效而发生故障是常见的,因为这些极端条件无法用现有的方法准确预测。该项目的三个具体研究目标是开发:1)有效的外推方法和数值框架,用于模拟涡轮机在运行和停放条件下的极端响应;2)涡轮设计极限响应计算的响应组合方案;3)在极端响应计算方法中包含可能出现在某些地点的非高斯风特征的方法。将考虑各种可能的风发生情况,为基于性能的涡轮机设计提供数据,提高可靠性。在这个项目中开发的数值框架将允许计算设计响应和考虑极端涡轮响应条件的疲劳失效估计数据。该项目的研究结果将改进风力涡轮机的设计,降低风险,提高发电效率。该项目将有助于改进当前的涡轮机设计标准和最先进的工具,以评估各种风力条件下的涡轮机性能。本项目开发的陆基涡轮机先进的建模和仿真工具,通过进一步纳入水动力相互作用的影响,也可以应用于海上风力涡轮机。美国涡轮机公司将能够使用这些工具来优化涡轮机性能,以提高他们在国内和全球风能市场上的竞争力。研究结果和发现也可用于其他结构体系在极端动荷载作用下的可靠性分析和设计。教育和推广活动包括建立一种新型的便携式台式教学风洞测试程序,该程序有望有效地加强空气动力学和风工程的课堂教育,并将使许多大学受益。该项目还将为参与该项目的研究生和本科生提供高级教育和培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinzhong Chen其他文献

Polariton Spectroscopy: Nanoimaging and Nanospectroscopy of Polaritons with Time Resolved s ‐SNOM (Advanced Optical Materials 5/2020)
极化子光谱:具有时间分辨 s -SNOM 的极化子纳米成像和纳米光谱(先进光学材料 5/2020)
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Yao;Suheng Xu;Debo Hu;Xinzhong Chen;Qing Dai;Mengkun Liu
  • 通讯作者:
    Mengkun Liu
大型单立柱双面广告牌结构风荷载及风振响应的风洞试验
  • DOI:
    10.11918/j.issn.0367-6234.201706050
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    汪大海;李志豪;Xinzhong Chen
  • 通讯作者:
    Xinzhong Chen
Assessment of overturning risk of high-speed trains in strong crosswinds using spectral analysis approach
利用谱分析方法评估强侧风下高速列车的倾覆风险
Efficacy of Turkstra's combination rule for extremes of nonlinearly combined correlated wind load effects
Wind-resistant design and equivalent static wind load of base-isolated tall building: A case study
高层隔震建筑抗风设计及等效静风荷载:以实例研究
  • DOI:
    10.1016/j.engstruct.2020.110533
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Zhihao Li;Guoqing Huang;Xinzhong Chen;Ying Zhou;Qingshan Yang
  • 通讯作者:
    Qingshan Yang

Xinzhong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinzhong Chen', 18)}}的其他基金

Advanced Characterization of Inelastic Performance of Tall Buildings to Wind for Performance-Based Design
高层建筑抗风非弹性性能的高级表征,用于基于性能的设计
  • 批准号:
    2153189
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Standard Grant
Assessing Probabilistic Extreme and Fatigue Responses of Wind-Excited Structures through Integration of Both Uncertainty and Directionality with a System Perspective
从系统角度整合不确定性和方向性来评估风激结构的概率极端和疲劳响应
  • 批准号:
    1536108
  • 财政年份:
    2015
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Standard Grant
Assessing Bridge Performance to Extreme Winds with Consideration of Non-Gaussian Features and System Uncertainties
考虑非高斯特征和系统不确定性评估桥梁在极端风下的性能
  • 批准号:
    0824748
  • 财政年份:
    2008
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302763
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302764
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Continuing Grant
Predictions of Properties of Matter using Physics-Based Force Fields Derived from First Principles
使用源自第一原理的基于物理的力场预测物质的性质
  • 批准号:
    2313826
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Continuing Grant
Advances in Biostatistics: Estimators Based on Misspecified Models and Predictions of Survival Times
生物统计学的进展:基于错误指定模型和生存时间预测的估计器
  • 批准号:
    RGPIN-2018-04304
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Discovery Grants Program - Individual
NeurAssist- An innovative AI-based neuro-imaging platform that assists clinicians with unbiased AI predictions and analytical tools.
NeurAssist - 一个基于人工智能的创新神经影像平台,通过公正的人工智能预测和分析工具帮助临床医生。
  • 批准号:
    10043592
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant for R&D
Validation of novel Parkinson's Disease target genes by Artificial Intelligence-based predictions
通过基于人工智能的预测验证新的帕金森病靶基因
  • 批准号:
    2728362
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Studentship
SBIR Phase I: Developing NLP-based Platform Technology for Phage-Host Interaction Predictions
SBIR 第一阶段:开发基于 NLP 的平台技术用于噬菌体-宿主相互作用预测
  • 批准号:
    2151387
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Standard Grant
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
  • 批准号:
    10602003
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
Feedback control for polymer extrusion processes based on virtual die melt temperature profile predictions
基于虚拟模具熔体温度分布预测的聚合物挤出过程的反馈控制
  • 批准号:
    2625300
  • 财政年份:
    2021
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Studentship
Advances in Biostatistics: Estimators Based on Misspecified Models and Predictions of Survival Times
生物统计学的进展:基于错误指定模型和生存时间预测的估计器
  • 批准号:
    RGPIN-2018-04304
  • 财政年份:
    2021
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了