Assessing Probabilistic Extreme and Fatigue Responses of Wind-Excited Structures through Integration of Both Uncertainty and Directionality with a System Perspective

从系统角度整合不确定性和方向性来评估风激结构的概率极端和疲劳响应

基本信息

  • 批准号:
    1536108
  • 负责人:
  • 金额:
    $ 29.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Better modeling and quantification of wind load effects on buildings and structures are essential for structural design and wind hazard mitigation. Wind tunnel studies and structural dynamic response analysis provide information of wind-induced extreme and fatigue responses as functions of wind speed and direction. The overall structural performance to strong wind is then evaluated by a further consideration of variations of wind speed and direction. As the most unfavorable wind direction that causes the largest wind load and structural response under given wind speed does not necessarily align with the direction of strongest wind, consideration of directionality effects can result in more economical design of structures as compared to the analysis with the "worst case" approach of disregarding wind directionality. The discrepancies of predictions from current existing approaches on directionality effect are found to be significant. Furthermore, these approaches cannot account for uncertainty and directionality in a unified framework. Due to a lack of scrutiny on the accuracy and effectiveness of these approaches, and a lack of a unified approach for both uncertainty and directionality, the detailed and comprehensive wind loading information derived from wind tunnel studies may not necessarily lead to expected improvement in the design of wind-excited structures. This research will consider the uncertainty and directionality of wind, aerodynamics, and structural characteristics in a unified framework with a system perspective. Simplified procedures will be developed for possible use in future design codes and standards. The new tools and knowledge can also be used for performance-based design and assessment of structural systems against multiple hazards.The goal of this research is to investigate transparent and reliable approaches for better assessing probabilistic multiple limit state responses to support a reliability and performance-based design of wind-excited structures. This research has the following objectives: 1) modeling of probabilistic extreme and fatigue responses of non-Gaussian response processes, 2) modeling of directional extreme wind speeds, 3) prediction of probabilistic extreme and fatigue responses considering both uncertainty and directionality, and 4) assessing structural performance with the effects of uncertainty and directionality accounting for multiple limit-state responses. The research findings will help develop consensus on how wind directionality effects are best quantified, thus the large discrepancies of existing approaches can be reduced or eliminated. The framework will also help wind engineering laboratories to better integrate wind tunnel study results with wind modeling for cost-effective design of structures to wind loads.
更好地建模和量化风荷载对建筑物和结构的影响是必不可少的结构设计和风灾缓解。 风洞研究和结构动力响应分析提供了作为风速和风向函数的风致极值和疲劳响应的信息。然后,通过进一步考虑风速和风向的变化来评估结构的整体强风性能。 由于在给定风速下引起最大风荷载和结构响应的最不利风向并不一定与最强风的方向一致,因此与忽略风向的“最坏情况”分析方法相比,考虑方向性效应可以使结构设计更经济。 从目前现有的方法预测的方向性效果的差异被发现是显着的。此外,这些方法无法在一个统一的框架内解释不确定性和方向性。由于缺乏对这些方法的准确性和有效性的审查,以及缺乏对不确定性和方向性的统一方法,从风洞研究中获得的详细而全面的风荷载信息可能不一定会导致风激结构设计的预期改进。 这项研究将考虑风的不确定性和方向性,空气动力学和结构特性在一个统一的框架与系统的观点。将制定简化程序,以便在今后的设计规范和标准中使用。新的工具和知识也可以用于基于性能的设计和评估的结构系统对multiplehazards.The研究的目标是调查透明和可靠的方法,更好地评估概率多极限状态响应,支持可靠性和基于性能的设计风激结构。 本研究有以下目的:1)建模的概率极值和疲劳响应的非高斯响应过程,2)建模的方向极端风速,3)预测的概率极值和疲劳响应的不确定性和方向性,和4)评估结构性能的不确定性和方向性的影响,占多个极限状态响应。研究结果将有助于就如何最好地量化风的方向性效应达成共识,从而减少或消除现有方法的巨大差异。 该框架还将帮助风工程实验室更好地将风洞研究结果与风建模相结合,以实现风荷载结构的成本效益设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinzhong Chen其他文献

Polariton Spectroscopy: Nanoimaging and Nanospectroscopy of Polaritons with Time Resolved s ‐SNOM (Advanced Optical Materials 5/2020)
极化子光谱:具有时间分辨 s -SNOM 的极化子纳米成像和纳米光谱(先进光学材料 5/2020)
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Yao;Suheng Xu;Debo Hu;Xinzhong Chen;Qing Dai;Mengkun Liu
  • 通讯作者:
    Mengkun Liu
大型单立柱双面广告牌结构风荷载及风振响应的风洞试验
  • DOI:
    10.11918/j.issn.0367-6234.201706050
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    汪大海;李志豪;Xinzhong Chen
  • 通讯作者:
    Xinzhong Chen
Assessment of overturning risk of high-speed trains in strong crosswinds using spectral analysis approach
利用谱分析方法评估强侧风下高速列车的倾覆风险
Efficacy of Turkstra's combination rule for extremes of nonlinearly combined correlated wind load effects
Wind-resistant design and equivalent static wind load of base-isolated tall building: A case study
高层隔震建筑抗风设计及等效静风荷载:以实例研究
  • DOI:
    10.1016/j.engstruct.2020.110533
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Zhihao Li;Guoqing Huang;Xinzhong Chen;Ying Zhou;Qingshan Yang
  • 通讯作者:
    Qingshan Yang

Xinzhong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinzhong Chen', 18)}}的其他基金

Advanced Characterization of Inelastic Performance of Tall Buildings to Wind for Performance-Based Design
高层建筑抗风非弹性性能的高级表征,用于基于性能的设计
  • 批准号:
    2153189
  • 财政年份:
    2022
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
Reliability-Based Predictions of Extreme and Fatigue Responses of Utility-Scale Wind Turbines through Advanced Modeling and Simulations
通过高级建模和仿真对公用事业规模风力涡轮机的极端和疲劳响应进行基于可靠性的预测
  • 批准号:
    1029922
  • 财政年份:
    2010
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant
Assessing Bridge Performance to Extreme Winds with Consideration of Non-Gaussian Features and System Uncertainties
考虑非高斯特征和系统不确定性评估桥梁在极端风下的性能
  • 批准号:
    0824748
  • 财政年份:
    2008
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Standard Grant

相似海外基金

New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Studentship
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Research Grant
ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
  • 批准号:
    EP/Y028783/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Studentship
Understanding conscious and unconscious learning of probabilistic information
理解概率信息的有意识和无意识学习
  • 批准号:
    24K16877
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
  • 批准号:
    24K07723
  • 财政年份:
    2024
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Statistical and Probabilistic Reasoning を重視した授業と教師用教材の開発研究
研究和开发以统计和概率推理为重点的课程和教材
  • 批准号:
    23K02801
  • 财政年份:
    2023
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strategic decision-making under non-probabilistic uncertainty
非概率不确定性下的战略决策
  • 批准号:
    2890417
  • 财政年份:
    2023
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Studentship
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
  • 批准号:
    2887257
  • 财政年份:
    2023
  • 资助金额:
    $ 29.82万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了