Mechanics of Materials at the Extreme Length-Scales

极端长度尺度的材料力学

基本信息

  • 批准号:
    1029935
  • 负责人:
  • 金额:
    $ 30.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

At the extremely small length-scales, the conventional mechanics of materials cease to be effective and new deformation mechanisms emerge. For example, dislocation based mechanisms in metals give way for grain boundary based mechanisms at the nanoscale. The focus of this research is on how mechanical breakdown at the extreme length-scales influence other physical properties. For example, grain boundaries impede current and heat carriers several orders of magnitude higher than dislocations do. As a result, when the mechanics change from dislocation (bulk) to grain boundary (nano) dominated one, very small change in strain can cause large changes in electrical or thermal conductivity. The core concept of this proposal is that at the extremely small length-scales, the mechanical deformation mechanics is strongly coupled with other physical (thermal and electrical) properties. The research will provide fundamental insights in the mechanics of materials at the extremely small length-scales, which will allow ?tuning? of thermal or electrical properties with strain for enhanced energy transport or conversion efficiency. The objective of this proposal is to study the role of specimen size, microstructure and defects on the coupling between mechanical deformation and electrical/thermal transport at the nanoscale. The PI will nanofabricate novel experimental tools with less than 3mm x 3mm size footprint to measure mechanical stress, strain, thermal conductivity and electrical conductivity of nanoscale thin films. From the data, the PI will construct the strain-temperature-transport (thermal and electrical) map to validate the proposed coupling concept. Seeing the defects and deformation as they evolve while measuring the thermo-physical properties will herald a paradigm shift in materials characterization and reduce the gap between theory and experiments. The proposed research will potentially impact the mechanical reliability and thermal management issues in future micro-electronics, flexible electronics, opto-electronics and laser devices, to name a few.
在极小尺度下,传统的材料力学不再有效,新的变形机制出现。例如,金属中基于位错的机制让位于纳米级的基于晶界的机制。本研究的重点是如何在极端长度尺度的机械故障影响其他物理性能。例如,晶界阻碍电流和热载体的几个数量级高于位错。因此,当力学从位错(体)到晶界(纳米)为主的力学变化时,应变的非常小的变化可以引起电导率或热导率的大的变化。该建议的核心概念是,在极小的长度尺度下,机械变形力学与其他物理(热和电)性质强烈耦合。这项研究将提供在材料力学的基本见解在极小的长度尺度,这将允许?调音?热或电性能与应变的增强的能量传输或转换效率。本提案的目的是研究试样尺寸,微观结构和缺陷之间的耦合在纳米尺度上的机械变形和电/热传输的作用。PI将纳米制造新的实验工具,尺寸小于3 mm x 3 mm,用于测量纳米薄膜的机械应力,应变,热导率和电导率。根据数据,PI将构建应变-温度-传输(热和电)图,以验证所提出的耦合概念。在测量热物理性能的同时看到缺陷和变形的演变,将预示着材料表征的范式转变,并减少理论和实验之间的差距。拟议的研究将潜在地影响未来微电子、柔性电子、光电子和激光器件中的机械可靠性和热管理问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Md Haque其他文献

Md Haque的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Md Haque', 18)}}的其他基金

Defect-Electron Interaction at Ambient Temperature in Metallic Materials
金属材料中环境温度下的缺陷-电子相互作用
  • 批准号:
    2103928
  • 财政年份:
    2022
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Heterojunctions as the Weakest Link: A Fundamental Investigation of Damage Evolution in Electronic Devices
异质结作为最薄弱的环节:电子设备损伤演化的基础研究
  • 批准号:
    2015795
  • 财政年份:
    2020
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Nanomanufacturing of Atomically-Uniform Two-Dimensional Materials over Large Areas
大面积原子均匀二维材料的纳米制造
  • 批准号:
    1760931
  • 财政年份:
    2018
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Vacancy Engineering for Enhanced Strength and Toughness of Metals
增强金属强度和韧性的空位工程
  • 批准号:
    1609060
  • 财政年份:
    2016
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
An Integrated Lab-on-a-Chip for Nanoelectronic Materials
纳米电子材料集成芯片实验室
  • 批准号:
    1028521
  • 财政年份:
    2011
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Nano-mechanical Properties of Grain Boundaries
晶界的纳米力学特性
  • 批准号:
    0625650
  • 财政年份:
    2007
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Career: In-situ Monitoring of Opto-electro-mechanical Responses of Single Cells to External Stimuli using MEMS
职业:使用 MEMS 原位监测单细胞对外部刺激的光电机械响应
  • 批准号:
    0545683
  • 财政年份:
    2006
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Nano-mechanics of Carbon Nanotube-Polymer Interfaces
碳纳米管-聚合物界面的纳米力学
  • 批准号:
    0555420
  • 财政年份:
    2006
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Thermo-Mechanical Effects on Electrical Transport in Carbon Nanotubes
碳纳米管电传输的热机械效应
  • 批准号:
    0501436
  • 财政年份:
    2005
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
SGER: Interfacial Mechanics of Carbon Nanotube-Polymer Composites
SGER:碳纳米管-聚合物复合材料的界面力学
  • 批准号:
    0411603
  • 财政年份:
    2004
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant

相似国自然基金

Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Thermophysical Property Analysers for Materials under Extreme Environments
极端环境下材料热物性分析仪
  • 批准号:
    LE240100130
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
In-situ nanomechanical testing for materials under extreme environments
极端环境下材料的原位纳米力学测试
  • 批准号:
    LE240100049
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Development of the cement-based materials resistant against extreme deep sea conditions
耐极端深海条件的水泥基材料的开发
  • 批准号:
    23K17779
  • 财政年份:
    2023
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
  • 批准号:
    2320309
  • 财政年份:
    2023
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Exploring quantum materials using extreme conditions of magnetic field and applied pressure
利用磁场和施加压力的极端条件探索量子材料
  • 批准号:
    2879723
  • 财政年份:
    2023
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Studentship
Collaborative Research: Rare Earth Materials Under Extreme Conditions
合作研究:极端条件下的稀土材料
  • 批准号:
    2209026
  • 财政年份:
    2022
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Continuing Grant
UHTC Conference - Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications V
UHTC会议-超高温陶瓷:极端环境应用材料V
  • 批准号:
    2228357
  • 财政年份:
    2022
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Extreme photonics of quantum two-dimensional materials
量子二维材料的极限光子学
  • 批准号:
    RGPIN-2021-04286
  • 财政年份:
    2022
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling and advancing novel functional materials under extreme conditions for energy applications
在能源应用的极端条件下启用和推进新型功能材料
  • 批准号:
    RGPIN-2020-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Studies of Earth and Planetary Materials at Extreme Conditions of Pressure and Temperature
极端压力和温度条件下地球和行星材料的实验研究
  • 批准号:
    RGPIN-2018-05021
  • 财政年份:
    2022
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了