Extreme photonics of quantum two-dimensional materials
量子二维材料的极限光子学
基本信息
- 批准号:RGPIN-2021-04286
- 负责人:
- 金额:$ 3.21万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When intense infrared laser fields illuminate crystals, the extremely nonlinear interaction converts the incident infrared photons to higher-energy ones, at visible and vacuum ultraviolet frequencies - the high harmonics. Peculiar to this intense interaction is the creation of a short-lived (up to a few femtoseconds, or 10-15 seconds) veritable quantum antenna only few nanometers long. Similarly to ordinary antennas, this quantum antenna can sense properties of the crystal, and the interaction itself, that cannot be accessed by other means. Past research focused on trivial crystals, so-called band insulators and semiconductors, the fringes of modern material science. Research proposed for this Discovery Grant, instead, aims at exploiting the rich physics exhibited by quantum materials, such as superconductivity and other strongly correlated phenomena, ordered phases, topology. Understanding and taming these phenomena will usher society in the "quantum era", with a fallout of technological innovation for Canada and the world. Specifically, my work will focus on 2-dimensional van der Waals materials and their heterostructures. This class of crystals exhibit all the exotic properties of quantum materials by stacking layers over layers of similar or dissimilar crystals in a controlled fashion. The ability to dial-in the physics "on demand" makes van der Waals heterostructures one of the most vibrant fields of material science. Utilizing the quantum antenna created during high-harmonic generation, I will develop novel methodologies to measure quantities that control the exotic physics, such as Berry curvature and Moire' potentials. At the same time, I plan to use the atomic-scale control of van der Waals interfaces to control the quantum antenna to create more efficient short-wavelength sources. The proposed research will add a new insightful perspective to the dynamical non-equilibrium properties of quantum solids. Such unique perspective is expected to be instrumental to the development of future quantum technologies for Canada.
当强烈的红外激光场照射晶体时,极端非线性的相互作用将入射的红外光子转换为更高能量的光子,在可见和真空紫外频率-高谐波。这种强烈的相互作用的特殊之处在于创造了一个短暂的(长达几飞秒,或10-15秒)真正的量子天线,只有几纳米长。与普通天线类似,这种量子天线可以感知晶体的特性,以及通过其他方式无法获得的相互作用本身。过去的研究集中在琐碎的晶体上,即所谓的带状绝缘体和半导体,它们是现代材料科学的边缘。相反,为这项发现基金提出的研究旨在探索量子材料所展示的丰富物理特性,如超导性和其他强相关现象、有序相、拓扑结构。理解和驯服这些现象将引领社会进入“量子时代”,为加拿大和世界带来技术创新的影响。具体来说,我的工作将集中在二维范德华材料及其异质结构上。这类晶体通过以可控的方式将相似或不同的晶体层层堆叠,表现出量子材料的所有奇异特性。“按需”拨入物理学的能力使范德华异质结构成为材料科学中最具活力的领域之一。利用高谐波产生过程中产生的量子天线,我将开发新的方法来测量控制奇异物理的数量,如贝里曲率和莫尔势。同时,我计划利用范德华界面的原子尺度控制来控制量子天线,以创造更高效的短波光源。本研究将为量子固体的动力学非平衡特性提供一个新的视角。这种独特的视角预计将有助于加拿大未来量子技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vampa, Giulio其他文献
In-Situ Nanoscale Focusing of Extreme Ultraviolet Solid-State High Harmonics
- DOI:
10.1103/physrevx.12.041036 - 发表时间:
2022-12-28 - 期刊:
- 影响因子:12.5
- 作者:
Korobenko, Aleksey;Rashid, Sabaa;Vampa, Giulio - 通讯作者:
Vampa, Giulio
Orbital perspective on high-harmonic generation from solids.
- DOI:
10.1038/s41467-023-44041-0 - 发表时间:
2023-12-18 - 期刊:
- 影响因子:16.6
- 作者:
Jimenez-Galan, Alvaro;Bossaer, Chandler;Ernotte, Guilmot;Parks, Andrew M.;Silva, Rui E. F.;Villeneuve, David M.;Staudte, Andre;Brabec, Thomas;Luican-Mayer, Adina;Vampa, Giulio - 通讯作者:
Vampa, Giulio
Vampa, Giulio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vampa, Giulio', 18)}}的其他基金
Extreme photonics of quantum two-dimensional materials
量子二维材料的极限光子学
- 批准号:
DGECR-2021-00347 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Launch Supplement
Extreme photonics of quantum two-dimensional materials
量子二维材料的极限光子学
- 批准号:
RGPIN-2021-04286 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
- 批准号:
2328096 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Standard Grant
CAREER: Quantum Computing - Trapped ion QPU with integrated photonics
职业:量子计算 - 具有集成光子学的俘获离子 QPU
- 批准号:
2338369 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Continuing Grant
CAREER: Bridging Infrared and Visible Photonics with Chip-ready Nonlinear and Quantum Metadevices
职业:通过芯片就绪的非线性和量子元设备桥接红外和可见光光子学
- 批准号:
2339271 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Continuing Grant
An advanced Platform for INtegrated Quantum photonics devices (PINQ)
集成量子光子器件的先进平台 (PINQ)
- 批准号:
EP/Y003837/1 - 财政年份:2024
- 资助金额:
$ 3.21万 - 项目类别:
Fellowship
H3Lo-QP: High-voltage High-IO High-transmission Low-temperature Quantum Photonics
H3Lo-QP:高压高IO高传输低温量子光子学
- 批准号:
10077765 - 财政年份:2023
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative R&D
Developing surfAce enhaNCEd infrared absorption photonics Quantum Devices for multiple vibrational modes imaging (DANCE-QD)
开发用于多振动模式成像的表面增强红外吸收光子量子器件 (DANCE-QD)
- 批准号:
2893075 - 财政年份:2023
- 资助金额:
$ 3.21万 - 项目类别:
Studentship
CAREER: Active Nonlinear Photonics with Applications in Quantum Networks
职业:有源非线性光子学在量子网络中的应用
- 批准号:
2410198 - 财政年份:2023
- 资助金额:
$ 3.21万 - 项目类别:
Continuing Grant
Metasurface enhanced and machine learning aided spectrochemical liquid biopsy
超表面增强和机器学习辅助光谱化学液体活检
- 批准号:
10647397 - 财政年份:2023
- 资助金额:
$ 3.21万 - 项目类别: