Nanomanufacturing of Atomically-Uniform Two-Dimensional Materials over Large Areas

大面积原子均匀二维材料的纳米制造

基本信息

  • 批准号:
    1760931
  • 负责人:
  • 金额:
    $ 32.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This award supports research to overcome a challenge of mutual exclusiveness of the crystalline quality and lateral size in the manufacture of two-dimensional materials. Two-dimensional materials are atomically thin films with properties that can revolutionize low-power electronics, biological detection, multi-functional composites and energy storage applications that promise important benefits for the US society and economy. The roadblock to these applications is that, when grown in large size, the two-dimensional material's crystallinity is poor and conventional heat treatment does not improve the crystallinity because the materials are typically resistant to high temperatures. This award enables the investigation of a fundamentally different approach, where a two-dimensional material is grown over a large area with initially low quality, which is then greatly improved through the combination of electrical and mechanical treatments. This is a multi-disciplinary approach, which trains the graduate students in cutting edge aspects of nanomanufacturing, materials science and mechanical engineering. The project involves undergraduate, women and under-represented minority students in research to better train the diverse work force of the future.This award investigates the manufacture of atomically thin two-dimensional (2D) materials over large areas by atomic layer or pulsed layer deposition. The as-grown nanosteets are usually of low crystallinity. The crystallinity is enhanced with a combination of electron wind force and mechanical stress. The electrons transfer their momentum at the defects and grain boundaries to impart unprecedented atomic/defect mobility at lower temperatures. The role of mechanical stress is to accelerate the electrical annealing. The hypothesis is that the stress field around the defect can intensify the local strain energy, which is a driving force for crystallization and grain growth. Computational models, based on reactive empirical bond-order potential with the electron wind force imparted to individual atoms, are developed to guide the experimental research. Experiments are performed inside the transmission electron microscope to understand the synthesis of ultra-thin films and electro-mechanical annealing. The in-situ microscopy reveals the transformation from a low quality amorphous phase to a highly crystalline state. The research demonstrates that high crystallinity 2D atomic layer materials can be achieved by a novel electrical and mechanical treatment instead of conventional heat treatment. The research also investigates scaling up of this technique by wafer-scale synthesis on a substrate coated for high residual stress followed by electrical annealing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持研究,以克服在二维材料制造中晶体质量和横向尺寸相互排斥的挑战。二维材料是原子级薄膜,其特性可以彻底改变低功耗电子器件,生物检测,多功能复合材料和储能应用,为美国社会和经济带来重要利益。这些应用的障碍是,当以大尺寸生长时,二维材料的结晶度差,并且常规热处理不能改善结晶度,因为材料通常耐高温。该奖项使人们能够研究一种根本不同的方法,即在最初质量较低的大面积上生长二维材料,然后通过电气和机械处理的结合大大改善。这是一个多学科的方法,培养研究生在纳米制造,材料科学和机械工程的前沿方面。该项目涉及本科生、女性和少数民族学生的研究,以更好地培养未来的多样化劳动力。该奖项研究通过原子层或脉冲层沉积在大面积上制造原子级薄的二维(2D)材料。所生长的纳米钢通常具有低结晶度。电子风力和机械应力的组合提高了结晶度。电子在缺陷和晶界处转移其动量,以在较低温度下赋予前所未有的原子/缺陷迁移率。机械应力的作用是加速电退火。假设缺陷周围的应力场可以增强局部应变能,这是晶化和晶粒长大的驱动力。计算模型,基于反应经验键级势与电子风力赋予单个原子,发展到指导实验研究。在透射电子显微镜内进行实验,以了解超薄膜的合成和机电退火。原位显微镜揭示了从低质量的非晶相到高度结晶状态的转变。研究表明,高结晶度的二维原子层材料可以通过一种新的电气和机械处理,而不是传统的热处理。该研究还调查了通过在高残余应力涂层衬底上进行晶圆级合成,然后进行电退火,从而扩大该技术的规模。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microstructural processing of steel at ambient surface temperature
Quality enhancement of low temperature metal organic chemical vapor deposited MoS2: an experimental and computational investigation
  • DOI:
    10.1088/1361-6528/ab2c3a
  • 发表时间:
    2019-09-27
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Islam, Zahabul;Zhang, Kehao;Haque, Aman
  • 通讯作者:
    Haque, Aman
Enhancement of WSe2 FET Performance Using Low-Temperature Annealing
  • DOI:
    10.1007/s11664-020-08087-w
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zahabul Islam;Azimkhan Kozhakhmetov;Joshua Robinson;A. Haque
  • 通讯作者:
    Zahabul Islam;Azimkhan Kozhakhmetov;Joshua Robinson;A. Haque
Defect annihilation in heavy ion irradiated polycrystalline gold
  • DOI:
    10.1016/j.matlet.2020.128694
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Zahabul Islam;C. Barr;K. Hattar;A. Haque
  • 通讯作者:
    Zahabul Islam;C. Barr;K. Hattar;A. Haque
Low-temperature annealing of 2D Ti3C2Tx MXene films using electron wind force in ambient conditions
  • DOI:
    10.1557/s43578-021-00373-5
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    M. Rasel;Brian C. Wyatt;Maxwell T. Wetherington;B. Anasori;A. Haque
  • 通讯作者:
    M. Rasel;Brian C. Wyatt;Maxwell T. Wetherington;B. Anasori;A. Haque
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Md Haque其他文献

Md Haque的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Md Haque', 18)}}的其他基金

Defect-Electron Interaction at Ambient Temperature in Metallic Materials
金属材料中环境温度下的缺陷-电子相互作用
  • 批准号:
    2103928
  • 财政年份:
    2022
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Heterojunctions as the Weakest Link: A Fundamental Investigation of Damage Evolution in Electronic Devices
异质结作为最薄弱的环节:电子设备损伤演化的基础研究
  • 批准号:
    2015795
  • 财政年份:
    2020
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Vacancy Engineering for Enhanced Strength and Toughness of Metals
增强金属强度和韧性的空位工程
  • 批准号:
    1609060
  • 财政年份:
    2016
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
An Integrated Lab-on-a-Chip for Nanoelectronic Materials
纳米电子材料集成芯片实验室
  • 批准号:
    1028521
  • 财政年份:
    2011
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Mechanics of Materials at the Extreme Length-Scales
极端长度尺度的材料力学
  • 批准号:
    1029935
  • 财政年份:
    2010
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Nano-mechanical Properties of Grain Boundaries
晶界的纳米力学特性
  • 批准号:
    0625650
  • 财政年份:
    2007
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Career: In-situ Monitoring of Opto-electro-mechanical Responses of Single Cells to External Stimuli using MEMS
职业:使用 MEMS 原位监测单细胞对外部刺激的光电机械响应
  • 批准号:
    0545683
  • 财政年份:
    2006
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Nano-mechanics of Carbon Nanotube-Polymer Interfaces
碳纳米管-聚合物界面的纳米力学
  • 批准号:
    0555420
  • 财政年份:
    2006
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
Thermo-Mechanical Effects on Electrical Transport in Carbon Nanotubes
碳纳米管电传输的热机械效应
  • 批准号:
    0501436
  • 财政年份:
    2005
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
SGER: Interfacial Mechanics of Carbon Nanotube-Polymer Composites
SGER:碳纳米管-聚合物复合材料的界面力学
  • 批准号:
    0411603
  • 财政年份:
    2004
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant

相似海外基金

New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
  • 批准号:
    2403736
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Standard Grant
AtomCat4Fuel: Atomically construction of AuPd catalyst for efficient CO2 hydrogenation to ethanol
AtomCat4Fuel:原子构建 AuPd 催化剂,用于高效 CO2 加氢生成乙醇
  • 批准号:
    EP/Y029305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Fellowship
CAREER: Atomically-Precise Single Photon Emitters
职业:原子级精确的单光子发射器
  • 批准号:
    2340398
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Continuing Grant
Harnessing Interlayer Biexcitons in Atomically Thin Heterostructures
利用原子薄异质结构中的层间双激子
  • 批准号:
    DP240101011
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Discovery Projects
Liquid metal solvents for high entropy and atomically configured systems
用于高熵和原子配置系统的液态金属溶剂
  • 批准号:
    DP240101086
  • 财政年份:
    2024
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Discovery Projects
ATomicallY Precise nanorIbbons QUAntum pLatform
原子级精确纳米带量子平台
  • 批准号:
    10076990
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    EU-Funded
Quantum Nanophotonics with Atomically Thin Materials
原子薄材料的量子纳米光子学
  • 批准号:
    FT220100053
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    ARC Future Fellowships
Optical properties and device physics of mixed-dimensional heterostructures constructed from atomically defined nanomaterials
由原子定义的纳米材料构建的混合维异质结构的光学特性和器件物理
  • 批准号:
    23H00262
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of atomically precise nano-molecular composite for investigation and exploration of their structure and properties
开发原子级精确的纳米分子复合材料,用于研究和探索其结构和性能
  • 批准号:
    23H01917
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of electrocatalytic activity of atomically precise metal clusters for the creation of highly active energy and environmental catalysts
阐明原子精确金属簇的电催化活性,用于创建高活性能源和环境催化剂
  • 批准号:
    23KK0098
  • 财政年份:
    2023
  • 资助金额:
    $ 32.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了