Heterojunctions as the Weakest Link: A Fundamental Investigation of Damage Evolution in Electronic Devices
异质结作为最薄弱的环节:电子设备损伤演化的基础研究
基本信息
- 批准号:2015795
- 负责人:
- 金额:$ 37.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT ABSTRACTProposal Title:Heterojunctions as the Weakest Link: A Fundamental Investigation of Damage Evolution in Electronic DevicesNon-technical AbstractReliability of microelectronic devices, such as transistors, is critical to applications. Typically, this is studied by loading the transistors to failure and then analyzing the electrical characteristics of the data. Post-mortem microscopy is also performed to visualize the damage inside the device. However, care must be taken to recreate the failure events. In this research, a novel concept is introduced where the transistor is tested inside microscopes that allow near-atomic resolution mapping of defect evolution and the role of local heat and current transport. Special consideration will be given to the interfaces between various layers inside a transistor, whose important role in device reliability has been difficult to study using conventional approaches. Such high-resolution access to mechanical, electrical and thermal domains will remove the existing challenge of identifying the local weak spots in the transistor and the fundamental mechanisms behind their impact on the global or device level failure. This unique approach will be applied to the study of high-power transistors that will be used in next generation all-electric transportation, energy storage and radio-frequency communication technologies. Success of this research will lead to transistors that will reduce the size and weight of relevant equipment in these applications while increasing power and reliability. In addition to the advancements in the fundamental science of high-power transistor reliability, the project will ensure training of the graduate and undergraduate students with cutting edge and multi-disciplinary science and technology. Outreach activities will be performed to attract K-12 students, who are the workforce of the next generation.Technical AbstractThe objective of this research is to investigate the role of heterojunctions in overall device reliability for power transistors. The research is motivated by the gap between the predicted and actual reliability of high power and high frequency devices touted to enable next generation all-electric transportation, energy storage and RF communication technologies. Gallium nitride based high electron mobility transistors (HEMT) will be studied to answer two fundamental questions: (a) what is the weakest component in a transistor in terms of defect nucleation and (b) is it defect nucleation or atomic diffusion that is more viral in device degradation. This research hypothesizes that diffusion across and along interfaces could be the answers and lays out a unique in-operando microscopy based validation approach. Transmission electron and thermo-reflectance microscopy will be used in real time to map and monitor the structural and transport characteristics of the devices during the onset of degradation. The high resolution, both spatially and temporally, shifts the current paradigm of looking for failure signatures in device data from the device-level to the atomic interface level. Realtime investigation of the atomic structure and chemistry of defects and interfaces, along with an understanding of their influence on electron-phonon interactions, will eliminate the roadblock of accurately identifying the dominant mechanism and quantifying its impact. The proposed research elaborately designs non-thermal experiments after isolating the various components of mechanical stress (residual, thermo-elastic and inverse piezo-electric). The outcome of this research will provide fundamental insights on GaN HEMT failure and suggest paths towards performance and reliability improvements. It will also train graduate and undergraduate students in both class and laboratory settings. The project will also reach out to the next generation workforce, the K-12 students, to attract them toward science and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目摘要建议题目:异质结作为最薄弱的环节:电子器件损伤演变的基础研究非技术摘要微电子器件,如晶体管的可靠性,是至关重要的应用。通常,这是通过将晶体管加载到故障,然后分析数据的电气特性来研究的。还进行了死后显微镜检查,以观察器械内部的损伤。但是,必须小心重新创建失败事件。在这项研究中,引入了一个新的概念,在显微镜内测试晶体管,允许近原子分辨率的缺陷演变映射和局部热和电流传输的作用。将特别考虑晶体管内部各层之间的界面,其在器件可靠性中的重要作用一直难以使用传统方法进行研究。这种对机械、电气和热学领域的高分辨率访问将消除识别晶体管中的局部弱点及其对全局或器件级故障的影响背后的基本机制的现有挑战。这种独特的方法将被应用于高功率晶体管的研究,这些晶体管将用于下一代全电动运输,储能和射频通信技术。这项研究的成功将导致晶体管在这些应用中减少相关设备的尺寸和重量,同时增加功率和可靠性。 除了大功率晶体管可靠性基础科学的进步外,该项目还将确保培养具有尖端和多学科科学技术的研究生和本科生。将进行推广活动,以吸引K-12的学生,谁是下一代的劳动力。技术摘要本研究的目的是调查的作用,异质结的整体器件的可靠性功率晶体管。这项研究的动机是高功率和高频设备的预测和实际可靠性之间的差距,这些设备被吹捧为实现下一代全电动运输,储能和射频通信技术。将研究基于氮化镓的高电子迁移率晶体管(HEMT)以回答两个基本问题:(a)就缺陷成核而言,晶体管中最弱的组件是什么;以及(B)在器件退化中更病毒性的是缺陷成核还是原子扩散。本研究假设,扩散和沿着接口可能是答案,并制定了一个独特的在操作显微镜为基础的验证方法。将在真实的时间内使用透射电子和热反射显微镜来绘制和监测器械在降解开始期间的结构和传输特性。在空间和时间上的高分辨率将当前在设备数据中寻找故障签名的范例从设备级转移到原子接口级。对缺陷和界面的原子结构和化学性质的实时调查,沿着对其对电子-声子相互作用的影响的理解,将消除准确识别主导机制并量化其影响的障碍。拟议的研究精心设计的非热实验后,隔离的各种成分的机械应力(残余,热弹性和逆压电)。 这项研究的结果将提供GaN HEMT故障的基本见解,并提出性能和可靠性改进的途径。它还将在课堂和实验室环境中培训研究生和本科生。该项目还将接触到下一代劳动力,K-12学生,以吸引他们对科学和技术。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gamma radiation on gallium nitride high electron mobility transistors at ON, OFF, and prestressed conditions
氮化镓高电子迁移率晶体管在开、关和预应力条件下的伽马辐射
- DOI:10.1116/6.0002216
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Rasel, Md Abu Jafar;Stepanoff, Sergei;Haque, Aman;Wolfe, Douglas E.;Ren, Fan;Pearton, Stephen J.
- 通讯作者:Pearton, Stephen J.
Heuristic Detection of the Most Vulnerable Regions in Electronic Devices for Radiation Survivability
电子设备中最脆弱区域的启发式检测,以提高辐射生存能力
- DOI:10.1149/2162-8777/ac861a
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:Stepanoff, Sergei P.;Rasel, Md Abu;Haque, Aman;Wolfe, Douglas E.;Ren, Fan;Pearton, Stephen J.
- 通讯作者:Pearton, Stephen J.
Non-destructive depth-resolved characterization of residual strain fields in high electron mobility transistors using differential aperture x-ray microscopy
- DOI:10.1063/5.0109606
- 发表时间:2022-07
- 期刊:
- 影响因子:3.2
- 作者:D. Pagan;M. Rasel;R. E. Lim;D. Sheyfer;Wenjun Liu;A. Haque
- 通讯作者:D. Pagan;M. Rasel;R. E. Lim;D. Sheyfer;Wenjun Liu;A. Haque
Growth and characterization of α-Ga2O3 on sapphire and nanocrystalline β-Ga2O3 on diamond substrates by halide vapor phase epitaxy
- DOI:10.1116/6.0002115
- 发表时间:2022-12-01
- 期刊:
- 影响因子:2.9
- 作者:Modak, Sushrut;Lundh, James Spencer;Pearton, Stephen J.
- 通讯作者:Pearton, Stephen J.
Thermal Stability of Transparent ITO/n-Ga 2 O 3 /n+-Ga 2 O 3 /ITO Rectifiers
透明ITO/n-Ga 2 O 3 /n-Ga 2 O 3 /ITO整流器的热稳定性
- DOI:10.1149/2162-8777/ac3ace
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Xia, Xinyi;Xian, Minghan;Ren, Fan;Rasel, Md Abu;Haque, Aman;Pearton, S. J.
- 通讯作者:Pearton, S. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Md Haque其他文献
Md Haque的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Md Haque', 18)}}的其他基金
Defect-Electron Interaction at Ambient Temperature in Metallic Materials
金属材料中环境温度下的缺陷-电子相互作用
- 批准号:
2103928 - 财政年份:2022
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Nanomanufacturing of Atomically-Uniform Two-Dimensional Materials over Large Areas
大面积原子均匀二维材料的纳米制造
- 批准号:
1760931 - 财政年份:2018
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Vacancy Engineering for Enhanced Strength and Toughness of Metals
增强金属强度和韧性的空位工程
- 批准号:
1609060 - 财政年份:2016
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
An Integrated Lab-on-a-Chip for Nanoelectronic Materials
纳米电子材料集成芯片实验室
- 批准号:
1028521 - 财政年份:2011
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Mechanics of Materials at the Extreme Length-Scales
极端长度尺度的材料力学
- 批准号:
1029935 - 财政年份:2010
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Nano-mechanical Properties of Grain Boundaries
晶界的纳米力学特性
- 批准号:
0625650 - 财政年份:2007
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Career: In-situ Monitoring of Opto-electro-mechanical Responses of Single Cells to External Stimuli using MEMS
职业:使用 MEMS 原位监测单细胞对外部刺激的光电机械响应
- 批准号:
0545683 - 财政年份:2006
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Nano-mechanics of Carbon Nanotube-Polymer Interfaces
碳纳米管-聚合物界面的纳米力学
- 批准号:
0555420 - 财政年份:2006
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Thermo-Mechanical Effects on Electrical Transport in Carbon Nanotubes
碳纳米管电传输的热机械效应
- 批准号:
0501436 - 财政年份:2005
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
SGER: Interfacial Mechanics of Carbon Nanotube-Polymer Composites
SGER:碳纳米管-聚合物复合材料的界面力学
- 批准号:
0411603 - 财政年份:2004
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
相似海外基金
The weakest link: new methods to measure the strength of geological faults
最薄弱的环节:测量地质断层强度的新方法
- 批准号:
RGPIN-2016-04677 - 财政年份:2021
- 资助金额:
$ 37.51万 - 项目类别:
Discovery Grants Program - Individual
The weakest link: new methods to measure the strength of geological faults
最薄弱的环节:测量地质断层强度的新方法
- 批准号:
RGPIN-2016-04677 - 财政年份:2019
- 资助金额:
$ 37.51万 - 项目类别:
Discovery Grants Program - Individual
The weakest link: new methods to measure the strength of geological faults
最薄弱的环节:测量地质断层强度的新方法
- 批准号:
RGPIN-2016-04677 - 财政年份:2018
- 资助金额:
$ 37.51万 - 项目类别:
Discovery Grants Program - Individual
Survival of the Weakest: Preserving and Analysing Born-Digital Records to Understand How Small Poetry Publishers Survive in the Global Marketplace
弱者生存:保存和分析原生数字记录以了解小型诗歌出版商如何在全球市场中生存
- 批准号:
AH/R00773X/1 - 财政年份:2018
- 资助金额:
$ 37.51万 - 项目类别:
Fellowship
The weakest link: new methods to measure the strength of geological faults
最薄弱的环节:测量地质断层强度的新方法
- 批准号:
RGPIN-2016-04677 - 财政年份:2017
- 资助金额:
$ 37.51万 - 项目类别:
Discovery Grants Program - Individual
Targeting the weakest links in DNA for selective structural recognition
针对 DNA 中最薄弱的环节进行选择性结构识别
- 批准号:
BB/P019250/1 - 财政年份:2017
- 资助金额:
$ 37.51万 - 项目类别:
Research Grant
Targeting the weakest links in DNA for selective structural recognition
针对 DNA 中最薄弱的环节进行选择性结构识别
- 批准号:
BB/P021328/1 - 财政年份:2017
- 资助金额:
$ 37.51万 - 项目类别:
Research Grant
The weakest link: new methods to measure the strength of geological faults
最薄弱的环节:测量地质断层强度的新方法
- 批准号:
RGPIN-2016-04677 - 财政年份:2016
- 资助金额:
$ 37.51万 - 项目类别:
Discovery Grants Program - Individual
Exploring the weakest bond: Structure and ionization of the Helium Dimer, Trimer and the search for the Efimov State
探索最弱的键:氦二聚体、三聚体的结构和电离以及 Efimov 态的搜索
- 批准号:
115609961 - 财政年份:2009
- 资助金额:
$ 37.51万 - 项目类别:
Reinhart Koselleck Projects
Defending the Weakest Link: Intrusion via Social Engineering
防御最薄弱的环节:通过社会工程入侵
- 批准号:
EP/D051819/1 - 财政年份:2006
- 资助金额:
$ 37.51万 - 项目类别:
Research Grant