SOLAR: Hybrid Semiconductors: Overcoming the Excitonic Bottleneck in Low Cost Solar Cells
太阳能:混合半导体:克服低成本太阳能电池的激子瓶颈
基本信息
- 批准号:1035196
- 负责人:
- 金额:$ 160万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:Meeting the energy needs of the world's growing population in an environmentally sustainable way is among the most important scientific challenges facing society today. This research project seeks transformative breakthroughs in the low-cost approach to efficient harvesting and conversion of solar energy into electricity by pursuing the following question: can an entirely new class of semiconductors be invented that generates delocalized excitonic species upon photoexcitation, presents new strategies for better harvesting of solar energy, and offers enhanced charge transport and collection in photovoltaic devices? Toward these ends, the project brings together investigators in chemistry (Prezhdo, Jenekhe, Luscombe), mathematics (Chen), and materials science (Cao, Schlaf, Luscombe, Jenekhe) to explore molecular level synthesis, characterization of electronic structure, and charge transport of a novel class of hybrid semiconductors for applications in low-cost solar cells. The planned research will: (1) Design and synthesize an entirely novel class of semiconductors, consisting of organic-organic and organic-inorganic hybrid semiconductors with engineered electronic, optical, and charge transport properties; (2) Determine the detailed electronic structure of these novel hybrid materials by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES); (3) Determine the optical and charge transport properties of the organic-organic and organic-inorganic hybrid semiconductors; (4) Develop a new mathematical approach to understanding the separation, annihilation, and transport of charges in hybrid semiconductors and associated photovoltaic devices; and (5) Explore the new hybrid semiconductors in solar cells. NON-TECHNICAL SUMMARY:The sun represents the most abundant potential source of pollution-free energy on earth. However, energy from current photovoltaic technologies is too expensive compared with that from fossil fuels. Novel semiconductor materials and devices that could potentially revolutionize solar energy conversion technologies, making them cost-competitive with fossil fuels, are needed. This project brings together several scientists with research expertise in chemistry, materials science, and mathematics to develop the basic knowledge needed for inventing new semiconductors and new photovoltaic devices for more efficient conversion of sunlight into electricity. Results from the project will lead to new generations of low-cost solar cells with high conversion efficiency and thereby contribute to addressing the energy and environmental challenges faced by society. The project also provides excellent opportunities for the training of scientists and engineers, including women and minorities, in the highly interdisciplinary fields of energy science and technologies, which require knowledge of chemistry, physics, materials science, mathematics, and engineering. New courses on solar energy materials, devices, and technologies, will be developed and taught at the upper undergraduate and graduate student levels. The project's senior investigators have a longstanding history of involvement of undergraduate, women, and minority students in their individual research programs. These efforts will be continued and expanded through this group project. The project's investigators have many research collaborations with scientists in Japan, China, Germany, Belgium, South Korea, Taiwan, Switzerland, Poland, UK, and Ukraine in the general areas of energy and electronics; they have hosted visits by senior scientists and students from some of these countries. This project will strengthen those international collaborations.
以环境可持续的方式满足世界不断增长的人口的能源需求是当今社会面临的最重要的科学挑战之一。该研究项目通过追求以下问题,寻求在低成本方法中实现太阳能有效收集和转化为电能的变革性突破:可以发明一种全新的半导体,在光激发时产生离域激子物质,提出更好地收集太阳能的新策略,并在光伏器件中提供增强的电荷传输和收集?为了实现这些目标,该项目汇集了化学(Prezhdo,Jenekhe,Luscombe),数学(Chen)和材料科学(Cao,Schlaf,Luscombe,Jenekhe)的研究人员,以探索分子水平的合成,电子结构的表征和新型混合半导体的电荷传输,用于低成本太阳能电池。计划中的研究将:(1)设计和合成一类全新的半导体,包括有机-有机和有机-无机杂化半导体,具有工程化的电子,光学和电荷传输特性;(2)通过光电子能谱(PES)和逆光电子能谱(IPES)确定这些新型杂化材料的详细电子结构;(3)确定有机-有机和有机-无机杂化半导体的光学和电荷输运性质;(4)发展一种新的数学方法来理解杂化半导体和相关光伏器件中电荷的分离、湮灭和输运;(5)探索太阳能电池中的新型混合半导体。非技术性总结:太阳是地球上最丰富的无污染能源。然而,与化石燃料相比,目前的光伏技术提供的能源过于昂贵。需要新型半导体材料和器件,这些材料和器件可能会彻底改变太阳能转换技术,使其与化石燃料相比具有成本竞争力。该项目汇集了几位在化学,材料科学和数学方面具有研究专长的科学家,以开发发明新半导体和新光伏器件所需的基本知识,以便更有效地将阳光转化为电能。该项目的成果将导致新一代低成本高转换效率的太阳能电池,从而有助于解决社会面临的能源和环境挑战。该项目还为在能源科学和技术这一高度跨学科领域培训科学家和工程师,包括妇女和少数民族提供了极好的机会,因为这需要化学、物理、材料科学、数学和工程方面的知识。太阳能材料,设备和技术的新课程,将开发和教授在高本科生和研究生水平。该项目的高级研究人员有一个长期的历史参与本科生,妇女和少数民族学生在他们的个人研究计划。这些努力将通过这一小组项目继续下去并扩大。该项目的研究人员与日本、中国、德国、比利时、韩国、台湾、瑞士、波兰、英国和乌克兰的科学家在能源和电子领域进行了许多研究合作;他们接待了来自其中一些国家的高级科学家和学生的访问。该项目将加强这些国际合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samson Jenekhe其他文献
n型ポリマーを用いた高移動度トップゲート電界効果トランジスタ
使用n型聚合物的高迁移率顶栅场效应晶体管
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
末永 悠;永瀬 隆;小林隆史;Ye-Jin Hwang;Samson Jenekhe;内藤裕義 - 通讯作者:
内藤裕義
Samson Jenekhe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samson Jenekhe', 18)}}的其他基金
Synthesis and Properties of Regioregular Conjugated Ladder Polymers
立体规整共轭梯形聚合物的合成与性能
- 批准号:
2003518 - 财政年份:2020
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Molecular and Morphology Engineering of Non-Fullerene Organic Solar Cells
非富勒烯有机太阳能电池的分子和形貌工程
- 批准号:
1803245 - 财政年份:2018
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Quasi-2D n-Type Semiconducting Polymers: Novel Monomers, Synthesis, and Enhanced Electron Transport and Photovoltaic Properties
准二维 n 型半导体聚合物:新型单体、合成以及增强的电子传输和光伏性能
- 批准号:
1708450 - 财政年份:2017
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Unipolar n-Type Semiconducting Polymers: Synthesis, Electron Transport, and Use in All-Polymer Solar Cells
单极 n 型半导体聚合物:合成、电子传输以及在全聚合物太阳能电池中的应用
- 批准号:
1409687 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
SusChEM: Designing Small-Molecule Replacements for Fullerenes in Organic Photovoltaics
SusChEM:设计有机光伏中富勒烯的小分子替代品
- 批准号:
1435912 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
n-Type and Ambipolar Polymer Semiconductors
n 型和双极性聚合物半导体
- 批准号:
0805259 - 财政年份:2008
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Ladder Polymer Semiconductors for Electronics
电子用梯形聚合物半导体
- 批准号:
0437912 - 财政年份:2004
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Processing and Evaluation of Advanced Polymers and Molecular Composites
先进聚合物和分子复合材料的加工和评估
- 批准号:
9311741 - 财政年份:1993
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
相似国自然基金
一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
- 批准号:20Y11910600
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
- 批准号:11875146
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
- 批准号:81770777
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
- 批准号:81601499
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
- 批准号:51505048
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
- 批准号:61572084
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
- 批准号:51509075
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Hybrid加速结构的理论及预制研究
- 批准号:11475201
- 批准年份:2014
- 资助金额:100.0 万元
- 项目类别:面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
- 批准号:41205073
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
- 批准号:51205392
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Modulating Optoelectronic Properties and Functionality of Hybrid Organic-Inorganic Semiconductors by Controlling Lattice Strain with Molecular Interactions at Surfaces
职业:通过表面分子相互作用控制晶格应变来调节有机-无机杂化半导体的光电特性和功能
- 批准号:
2237211 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Collaborative Research: Amorphous-Crystalline Switching in Organic-Inorganic Hybrid Semiconductors
合作研究:有机-无机混合半导体中的非晶-晶体转换
- 批准号:
2114117 - 财政年份:2021
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Supramolecular Approaches to Novel Physical scenarios in Hybrid van der Waals Heterostructures and Organic Semiconductors
混合范德华异质结构和有机半导体中新物理场景的超分子方法
- 批准号:
RGPIN-2017-06748 - 财政年份:2021
- 资助金额:
$ 160万 - 项目类别:
Discovery Grants Program - Individual
Hybrid halide semiconductors for innovative optoelectronic applications.
用于创新光电应用的混合卤化物半导体。
- 批准号:
21K05250 - 财政年份:2021
- 资助金额:
$ 160万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Amorphous-Crystalline Switching in Organic-Inorganic Hybrid Semiconductors
合作研究:有机-无机混合半导体中的非晶-晶体转换
- 批准号:
2114121 - 财政年份:2021
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
CAREER: Mixed-bonded IV-VI semiconductors for hybrid heterostructures
职业:用于混合异质结构的混合键合 IV-VI 半导体
- 批准号:
1945321 - 财政年份:2020
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Supramolecular Approaches to Novel Physical scenarios in Hybrid van der Waals Heterostructures and Organic Semiconductors
混合范德华异质结构和有机半导体中新物理场景的超分子方法
- 批准号:
RGPIN-2017-06748 - 财政年份:2020
- 资助金额:
$ 160万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Mixed-bonded IV-VI semiconductors for hybrid heterostructures
职业:用于混合异质结构的混合键合 IV-VI 半导体
- 批准号:
2036520 - 财政年份:2020
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Photocurrent/Spin Current Conversion in Chiral Organic-Inorganic Hybrid Perovskite-type Semiconductors
手性有机-无机杂化钙钛矿型半导体中的光电流/自旋电流转换
- 批准号:
20H01829 - 财政年份:2020
- 资助金额:
$ 160万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Supramolecular Approaches to Novel Physical scenarios in Hybrid van der Waals Heterostructures and Organic Semiconductors
混合范德华异质结构和有机半导体中新物理场景的超分子方法
- 批准号:
RGPIN-2017-06748 - 财政年份:2019
- 资助金额:
$ 160万 - 项目类别:
Discovery Grants Program - Individual