EAGER: Ion Transport Properties and Engineering of Interfaces of Layered Kevlar Assemblies for High Performance Lithium Battery Membranes

EAGER:高性能锂电池膜的层状凯夫拉尔组件的离子传输特性和界面工程

基本信息

项目摘要

1036672KotovFinding a technological solution for safe energy storage with high capacity and fast discharge rates is vital for the transition to the carbon neutral economy and oil independence in the USA. The required parameters for electricity storage can potentially be achieved for Li metal polymer batteries and some Li+ ion batteries, but one must resolve the central bottleneck of all lithium battery technologies related to the fundamental problems of interfacial mass/charge transport, i.e. the growth of dendrites. They are the source of rapid decrease the performance upon cycling and serious fire safety concerns. This leads to the acute need of new concepts in ion-conducting membranes (ICMs) preventing dendrite growth. Based on theoretical analysis of transport processes at the ICM-electrode boundary, it was theoretically established that dendrite growth can be inhibited entirely by an ICM with a shear modulus of G ¡Ý7 GPa. Presently, there are no materials available satisfying this and other key requirements, such as ionic conductivity ¡Ý 10- 4 S/m. To resolve this bottleneck and to impart seemingly contradictive material characteristics, new manufacturing methods are needed to engineer interfacial processes/properties and achieve the technological targets for battery materials.Intellectual Merit: This project will utilize (1) layer-by-layer assembly (LBL) and (2) ultrastrong Kevlar nanofibers to obtain a new generation of ICMs that can completely suppress dendrite growth. LBL is very simple inexpensive technique leading to films with exceptional uniformity and high Young¡¯s modulus. Their mechanical properties will be further enhanced with Kevlar. This polymer will be used in an unconventional form as nanofibers dispersion with a diameter of 50-70 nm and a length of 1-3 microns.Based on encouraging preliminary results, the PIs plan to achieve proof-of-concept. The Objectives are: (1) to reach ion-conductivity in 10-4-10-3 S/m range using ion templating of ion-conducting polymers; and (2) to attainG¡Ý 7 GPa by using inherently strong LBL components and controlled interfacial cross-linking between them. Both of these objectives are intrinsically related to the interfacial and mass transport processes of the materials, where the group has extensive expertise and technical capabilities. This is a fundamentally innovative method for manufacturing of ICMs and does not have an established pool of researchers with expertise in dendrite formation. Besides the introduction of LBL technique as a novel method for manufacturing the ICMs, facilitation of ion transport in solid materials provides unique opportunities for the development of batteries as well as other energy conversion technologies. Such technologies also include fuel cells and osmotic energy generators. The utilization of nanoscale fibers of Kevlar represents a great change from the traditional view of potential uses of this well-established flexible armor material. Additional intellectual impact is also expected from the development of lithium ion-templating process which would be difficult to realize before without nanoscale control of interfaces in ICMs.Broader Impact: The proposed work makes a significant step toward alleviating the technological bottlenecks on the way to CO2¨Cneutral (energy) economy. The development of new ICMs can greatly reduce CO2 emissions by making possible competitive full electric options for electrical vehicles and high capacity electrical storage systems for solar energy and wind farms. Safety of intermediate electrical storage blocks is another fundamental challenges for large scale batteries which is being addressed here as well. The research work will be accompanied by aggressive dissemination of information about importance of new materials for energy research. This part of the project will be done with strong involvement of the high school students from Community High School in Ann Arbor, MI with whom we have established relationships from 2007, and undergraduates from the UM Department of Electrical and Computer Engineering. Together with them, the investigators will develop a web-site explaining the principles of key components of the chain of electricity generation and consumption now and in the future. The joint work of undergraduates and high school students is expected to have a strong positive impact on the carrier choices of upper classmen and will help bringing greater number of highly qualified underrepresented minority and female students to engineering.
1036672Kotov 寻找高容量和快速放电率的安全储能技术解决方案对于美国向碳中和经济和石油独立的过渡至关重要。锂金属聚合物电池和一些锂离子电池有可能达到蓄电所需的参数,但必须解决与界面质量/电荷传输的基本问题相关的所有锂电池技术的中心瓶颈,即枝晶的生长。它们是骑行时性能快速下降和严重消防安全问题的根源。这导致迫切需要离子传导膜(ICM)的新概念来防止枝晶生长。基于ICM-电极边界输运过程的理论分析,理论上证明剪切模量为G≥7 GPa的ICM可以完全抑制枝晶的生长。目前,还没有材料可以满足这一要求和其他关键要求,例如离子电导率≥10-4S/m。为了解决这一瓶颈并赋予看似矛盾的材料特性,需要新的制造方法来设计界面工艺/性能并实现电池材料的技术目标。 智力优势:该项目将利用(1)逐层组装(LBL)和(2)超强凯夫拉纳米纤维来获得能够完全抑制枝晶生长的新一代ICM。 LBL 是一种非常简单、廉价的技术,可产生具有出色均匀性和高杨氏模量的薄膜。凯夫拉尔纤维将进一步增强其机械性能。这种聚合物将以非常规的形式使用,即直径为 50-70 nm、长度为 1-3 微米的纳米纤维分散体。基于令人鼓舞的初步结果,PI 计划实现概念验证。 目标是: (1) 使用离子导电聚合物的离子模板实现 10-4-10-3 S/m 范围内的离子电导率; (2)通过使用固有的强LBL组分和它们之间受控的界面交联来达到G±7 GPa。这两个目标本质上都与材料的界面和质量传输过程相关,该团队在该过程中拥有广泛的专业知识和技术能力。这是一种从根本上创新的 ICM 制造方法,并且没有成熟的具有枝晶形成专业知识的研究人员库。除了引入 LBL 技术作为制造 ICM 的新方法之外,固体材料中离子传输的促进为电池以及其他能量转换技术的发展提供了独特的机会。此类技术还包括燃料电池和渗透能发生器。凯夫拉尔纳米级纤维的使用代表了对这种成熟的柔性装甲材料潜在用途的传统看法的巨大改变。锂离子模板工艺的发展预计还会带来额外的智力影响,如果没有对ICM中界面的纳米级控制,这在以前是很难实现的。更广泛的影响:拟议的工作朝着缓解二氧化碳中性(能源)经济的技术瓶颈迈出了重要一步。新ICM的开发可以为电动汽车以及太阳能和风电场的高容量电力存储系统提供具有竞争力的全电动选择,从而大大减少二氧化碳排放。中间电存储块的安全性是大规模电池面临的另一个基本挑战,这里也正在解决这一问题。研究工作将伴随着有关新材料对能源研究重要性的信息的积极传播。该项目的这一部分将在密歇根州安娜堡社区高中的高中生以及密歇根大学电气与计算机工程系的本科生的大力参与下完成,我们从 2007 年就与他们建立了合作关系。研究人员将与他们一起开发一个网站,解释现在和未来发电和消费链关键组成部分的原理。本科生和高中生的联合工作预计将对高年级学生的职业选择产生强烈的积极影响,并将有助于吸引更多高素质的、代表性不足的少数族裔和女学生进入工程学领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Kotov其他文献

Nanocomposites are stretched thin
纳米复合材料被拉伸变薄
  • DOI:
    10.1038/nmat1224
  • 发表时间:
    2004-10-01
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Nicholas Kotov
  • 通讯作者:
    Nicholas Kotov
Complexity, disorder, and functionality of nanoscale materials
  • DOI:
    10.1557/s43577-024-00698-6
  • 发表时间:
    2024-04-12
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Xiaoming Mao;Nicholas Kotov
  • 通讯作者:
    Nicholas Kotov
Chiral Kirigami for Bend-Tolerant Real-Time Recon�gurable Holograms
用于耐弯曲实时可重构全息图的手性剪纸
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Won Jin;Choi;Lawrence Livermore;National Laboratory;Sang Hyun Lee;Nicholas Kotov
  • 通讯作者:
    Nicholas Kotov
Structural characterization of PSMa1 functional amyloids in <em>Staphylococcus aureus</em> biofilm
  • DOI:
    10.1016/j.bpj.2021.11.1210
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Chloe Luyet;Paolo Elvati;Yichun Wang;Changjiang Liu;J. Scott VanEpps;Nicholas Kotov;Angela Violi
  • 通讯作者:
    Angela Violi

Nicholas Kotov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Kotov', 18)}}的其他基金

CENTER FOR COMPLEX PARTICLE SYSTEMS (COMPASS)
复杂粒子系统中心(指南针)
  • 批准号:
    2243104
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Cooperative Agreement
LOCK-AND-KEY INTERACTIONS BETWEEN CHIRAL NANOPARTICLES AND PROTEINS
手性纳米粒子和蛋白质之间的锁匙相互作用
  • 批准号:
    2317423
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Planning IUCRC at University of Michigan: Center for Hierarchical Emergent Materials (CHEM)
密歇根大学 IUCCRC 规划:分层新兴材料中心 (CHEM)
  • 批准号:
    1939428
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
PFI-TT: Biomimetic Aramid Separators for Long-Lifetime Lithium-Sulfur Batteries
PFI-TT:用于长寿命锂硫电池的仿生芳纶隔膜
  • 批准号:
    1919201
  • 财政年份:
    2019
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Chiral Ceramic Nanoparticles of Tungsten Oxides
氧化钨手性陶瓷纳米粒子
  • 批准号:
    1748529
  • 财政年份:
    2018
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Nanospiked Particles for Photocatalysis
用于光催化的纳米尖峰颗粒
  • 批准号:
    1566460
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Layered Composites from Branched Nanofibers for Lithium Ion Batteries
用于锂离子电池的支化纳米纤维层状复合材料
  • 批准号:
    1538180
  • 财政年份:
    2015
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Energy- and Cost- Efficient Manufacturing Employing Nanoparticle Self-Assembly with Continuous Crystallinity
采用具有连续结晶度的纳米颗粒自组装技术实现能源高效且成本高效的制造
  • 批准号:
    1463474
  • 财政年份:
    2015
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
I-Corps: Ultrastrong, thermally stable aramid nanofibers (ANFs) membranes
I-Corps:超强、热稳定芳纶纳米纤维 (ANF) 膜
  • 批准号:
    1464101
  • 财政年份:
    2014
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Detection of Protein Misfolding Using Nanorod Assemblies
使用纳米棒组件检测蛋白质错误折叠
  • 批准号:
    1403777
  • 财政年份:
    2014
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

面向多传感器信息融合移动焊接机器人PEMFC/Li-ion电池系统能量分配优化控制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
电动汽车Li-ion电池与SC混合储能系统能量管理策略研究
  • 批准号:
    51677058
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
抗肿瘤转移先导化合物ION-31a的衍生合成、分子机制及靶点研究
  • 批准号:
    81673310
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
Ion Torrent多基因平行测序技术筛选及鉴定肺腺癌主要的EGFR-TKI耐药驱动变异基因
  • 批准号:
    81372503
  • 批准年份:
    2013
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目
CO2单电离及电离解离过程的(e,2e+ion)实验研究
  • 批准号:
    11204322
  • 批准年份:
    2012
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
  • 批准号:
    EP/Z000726/1
  • 财政年份:
    2025
  • 资助金额:
    $ 13万
  • 项目类别:
    Fellowship
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
  • 批准号:
    EP/Z000254/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Research Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
  • 批准号:
    2339634
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Ion transport in solid electrolyte interphases
固体电解质界面中的离子传输
  • 批准号:
    2887685
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
Theoretical study of ion transport in ZIP8 protein based on statistical mechanics theory of liquids
基于液体统计力学理论的ZIP8蛋白离子输运理论研究
  • 批准号:
    23K19236
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Breakthrough of turbulent transport mechanism of self-burning plasma by high energy ion and tubulence analysis
高能离子与湍流分析突破自燃等离子体湍流输运机制
  • 批准号:
    23H01160
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Engineering Fuel Cell Electrodes to Overcome Ion Transport Limitations using Low-cost, Efficient Lignin-based Ionomers
使用低成本、高效的木质素离聚物设计燃料电池电极以克服离子传输限制
  • 批准号:
    2310185
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Characterisation of ion and electron scale electromagnetic turbulent transport in MAST. Upgrade and STEP pedestals
MAST 中离子和电子尺度电磁湍流输运的表征。
  • 批准号:
    2888734
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Studentship
NSF-BSF: Multi-ion Transport, Rotation, and Turbulence in Hydrodynamic Compression of Z-pinch
NSF-BSF:Z 箍缩流体动力压缩中的多离子输运、旋转和湍流
  • 批准号:
    2308829
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了