Unsupervised Learning of Hierarchical Representations for Natural Images

自然图像分层表示的无监督学习

基本信息

项目摘要

Die wesentliche Herausforderung des autonomen Lernens besteht darin, mit der großen Komplexität der Umwelt umzugehen. Theoretische Überlegungen sowie Beobachtungen aus der Biologie sprechen dafür, dass hierarchisch aufgebaute Repräsentationen besonders gut dazu geeignet sind. Diese Tatsache wird jedoch erst seit der Einführung von neuen Lernverfahren auch durch empirische Resultate aus dem Bereich des maschinellen Lernens unterstützt. In unserer Arbeitsgruppe durchgeführte quantitative Analysen haben aber auch entscheidende Verbesserungsmöglichkeiten bei den aktuellen hierarchischen Modellen aufgedeckt. Im Rahmen dieses Projekts wollen wir daher Lernmethoden herleiten, die auf den Erkenntnissen dieser quantitativen Analysen aufbauen. Komplementär dazu werden wir hierarchische Bildmodelle entwickeln, die leistungsfähige Bildrepräsentationen versprechen und die von den neuen Lernalgorithmen profitieren können. Da uns die Quantifizierung des Fortschritts besonders wichtig ist, werden wir auch die Evaluierung neuer Modelle und Verfahren sowie die Entwicklung weiterer Kriterien zur Bewertung von gelernten Modellen in diesem Projekt weiter vorantreiben.
最好的办法是让学生们在环境复杂的大环境中学习。理论上,从生物学的角度来看,等级制度的代表性是非常重要的。这些纹身将首先从新的Lernverfahren的Einführung开始,也是通过机器Lernens Unterstützt的Bereich的经验结果。在我们的工作组中,通过定量分析,我们也可以通过建立层次模型来进行比较。在这些项目中,我们将采用一种新的方法,对结果进行定量分析。我们韦尔登通过构建层次化的图片模型来完成这一任务,这些图片模型可以通过新的Lernalgorithmen profitieren können来实现。为了对堡垒进行定量分析,韦尔登还将对新的模型进行评价,并在今后的项目中对模型进行评价。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Matthias Bethge其他文献

Professor Dr. Matthias Bethge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Matthias Bethge', 18)}}的其他基金

Rehabilitation access and effectiveness cohort study for persons with back pain (REHAB-BP)
背痛患者康复途径和有效性队列研究 (REHAB-BP)
  • 批准号:
    317621938
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Transformer-based Framework for Multi-objective Reinforcement Learning using Hierarchical Policies
使用分层策略的基于 Transformer 的多目标强化学习框架
  • 批准号:
    24K20843
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Towards Hierarchical and Provably Safe Control for Learning-Enabled Autonomous Systems
职业:为支持学习的自主系统实现分层且可证明安全的控制
  • 批准号:
    2237850
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NRI: Hierarchical Representation Learning for Robot Assistants
NRI:机器人助手的分层表示学习
  • 批准号:
    2405103
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Excellence in Research: A Hierarchical Machine Learning Approach for Securing of NoC-Based MPSoCs Against Thermal Attacks
卓越的研究:用于保护基于 NoC 的 MPSoC 免受热攻击的分层机器学习方法
  • 批准号:
    2302537
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Communication and Computation for Hierarchical Learning at the Mobile Edge
移动边缘分层学习的协作通信和计算
  • 批准号:
    RGPIN-2020-05886
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
NRI: Hierarchical Representation Learning for Robot Assistants
NRI:机器人助手的分层表示学习
  • 批准号:
    2132519
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了