III: EAGER: Learning Evaluation Metrics for Information Retrieval
III:EAGER:信息检索的学习评估指标
基本信息
- 批准号:1049694
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information retrieval (IR) performance is typically measured in terms of relevancy: every document is known to be either relevant or non-relevant to a particular query. Furthermore, more relevant documents are expected to receive a higher rank than lower less relevant documents. However, determination of relevance and rank by users is not practical. Therefore, it is crucial to develop evaluation metrics and ranking functions that can be derived automatically from judgment data and user behavior data, rather than ad-hoc heuristics. This exploratory project investigates machine learning approaches for constructing evaluation metrics for Web search and information retrieval that consider along important directions other than relevance such as diversity, balance and coverage. The approach is based on fundamentally extending the popular evaluation metric Discounted Cumulated Gains (DCG). Research focuses on developing optimization methods for learning DCG that can incorporate the degree of difference in pair-wise comparison of ranking lists. Machine learning methods that can learn DCG for the more realistic scenarios where the relevance grades are not readily available are explored, and nonlinear utility functions as evaluation metrics that can accurately capture the quality of search result sets in terms of relevance, diversity, coverage, balance and novelty are investigated.The project has a number of broad impacts. Research results are expected to provide foundations for further research in evaluation metrics. Active collaborations with industry leaders in Web search will enable the resulting methods to have real impacts on search engine as well as large IR system performance improvements. Improving the quality of search results will have significant impacts on satisfying people's information needs as well as their quality of life in general. The set of research topics lies at the interface between information retrieval and machine learning applications and it provides an ideal setting for training undergraduate and graduate students in the emerging interdisciplinary field of Web of science and engineering research. The project Web site (http://www.cc.gatech.edu/~zha/metrics.html) will be used for results dissemination.
信息检索(IR)性能通常是根据相关性来衡量的:每个文档都已知与特定查询相关或不相关。此外,更相关的文件预计将获得比较低的不太相关的文件更高的排名。然而,由用户确定相关性和等级是不实际的。因此,开发可以从判断数据和用户行为数据自动导出的评估指标和排名函数,而不是ad-hoc算法是至关重要的。这个探索性的项目研究机器学习方法,用于构建Web搜索和信息检索的评估指标,这些指标考虑沿着重要的方向,而不是相关性,如多样性,平衡性和覆盖率。该方法是基于从根本上扩展流行的评估指标贴现累积收益(DCG)。研究重点是开发用于学习DCG的优化方法,该方法可以将排序列表的成对比较中的差异程度结合起来。机器学习方法,可以学习DCG的更现实的情况下,相关性等级是不容易获得的探索,和非线性效用函数作为评估指标,可以准确地捕捉搜索结果集的相关性,多样性,覆盖率,平衡性和新奇方面的质量进行了调查。研究结果有望为评价指标的进一步研究提供基础。与Web搜索行业领导者的积极合作将使所产生的方法对搜索引擎产生真实的影响,并大大提高IR系统的性能。提高搜索结果的质量将对满足人们的信息需求以及他们的生活质量产生重大影响。该研究课题集位于信息检索和机器学习应用程序之间的接口,它提供了一个理想的环境,培养本科生和研究生在新兴的跨学科领域的Web科学和工程研究。将利用项目网址(http://www.cc.gatech.edu/martzha/metrics.html)传播成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyuan Zha其他文献
A note on constructing a symmetric matrix with specified diagonal entries and eigenvalues
- DOI:
10.1007/bf01732616 - 发表时间:
1995-09-01 - 期刊:
- 影响因子:1.700
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
A Cubically Convergent Parallelizable Method for the Hermitian Eigenvalue Problem
厄米特征值问题的三次收敛并行化方法
- DOI:
10.1137/s0895479896302035 - 发表时间:
1998-04 - 期刊:
- 影响因子:0
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
Modifying the Generalized Singular Value Decomposition with Application in Direction-of-Arrival Finding
修正广义奇异值分解及其在波达方向查找中的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
Boundary-Eliminated Pseudoinverse Linear Discriminant for Imbalanced Problems
不平衡问题的边界消除伪逆线性判别式
- DOI:
10.1109/tnnls.2017.2676239 - 发表时间:
2018-06 - 期刊:
- 影响因子:10.4
- 作者:
Yujin Zhu;Zhe Wang;Hongyuan Zha;Daqi Gao - 通讯作者:
Daqi Gao
Structure and Perturbation Analysis of Truncated SVD for Column-Partitioned Matrices
列划分矩阵截断SVD的结构和摄动分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhenyue Zhang;Hongyuan Zha - 通讯作者:
Hongyuan Zha
Hongyuan Zha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyuan Zha', 18)}}的其他基金
Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning
合作研究:CDS
- 批准号:
1317372 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Small: Exploring Social and Behavioral Contexts for Information Retrieval
III:小:探索信息检索的社会和行为背景
- 批准号:
1116886 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Computational Methods for Nonlinear Dimension Reduction
非线性降维的计算方法
- 批准号:
0736328 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Matrix Algorithms for Data Clustering and Nonlinear Dimension Reduction
用于数据聚类和非线性降维的矩阵算法
- 批准号:
0701796 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Manifold Learning from Unorganized High-dimensional Data Points
从无组织的高维数据点进行流形学习
- 批准号:
0701825 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Matrix Algorithms for Data Clustering and Nonlinear Dimension Reduction
用于数据聚类和非线性降维的矩阵算法
- 批准号:
0305879 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Manifold Learning from Unorganized High-dimensional Data Points
从无组织的高维数据点进行流形学习
- 批准号:
0311800 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Large-Scale Matrix Computation Problems in Information Retrieval and Datamining
信息检索和数据挖掘中的大规模矩阵计算问题
- 批准号:
9901986 - 财政年份:1999
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Numerical Methods for large Eigenvalue Problems: Parallizable Fast Algorithms and Inner-Outer iterations
大特征值问题的数值方法:可并行快速算法和内外迭代
- 批准号:
9619452 - 财政年份:1997
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RIA: The Canonical Correlations: Numerical Algorithms and Extensions
RIA:规范相关性:数值算法和扩展
- 批准号:
9308399 - 财政年份:1993
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
- 批准号:
2412345 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Private Blockchain-Enabled Federated Learning Framework for Distributed Manufacturing Networks
EAGER:支持私有区块链的分布式制造网络联合学习框架
- 批准号:
2420964 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SHF: Verified Audit Layers for Safe Machine Learning
EAGER:SHF:用于安全机器学习的经过验证的审计层
- 批准号:
2318724 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Education DCL: EAGER: Experiential Learning Platform and Curricular Modules for Quantum Computing Security and Privacy Education
教育 DCL:EAGER:量子计算安全和隐私教育的体验式学习平台和课程模块
- 批准号:
2335788 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329273 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Integrating Multi-Omics Biological Networks and Ontologies for lncRNA Function Annotation using Deep Learning
EAGER:使用深度学习集成多组学生物网络和本体以进行 lncRNA 功能注释
- 批准号:
2400785 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Co-Designing a Cognitive Teaching Assistant to Support Evidence-Based Instruction in Open-Ended Learning Environments
EAGER:共同设计认知助教,支持开放式学习环境中的循证教学
- 批准号:
2327708 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant