Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning
合作研究:CDS
基本信息
- 批准号:1317372
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this proposal is to develop robust algorithms for reconstructing or synthesizing highly structured high-dimensional data based on a low-dimensional representation learned from a training dataset, i.e., the interpolation and extrapolation problems in manifold learning. The project will address the elusive issue of computing a usually not well-defined low-dimensional parametrization in the setting of various interpolation and extrapolation problems for manifold learning, emphasizing the notion of physically meaningful paramterizations. It will develop innovative computational methodology for flexibly learning a low-dimensional parametrization together with other physically important variables in the context of both unsupervised and semi-supervised learning and especially active learning settings, for learning and synthesis of dynamic data, and for manifold extrapolation based on transfer learning. Included in the project is a development of a publicly available software package which will disseminate the research results and promote applications of nonlinear dimension reduction methodology to real-world problems.The discoveries from this proposed research are expected to impact a wide range of areas of applications. Computing compact representation of high-dimensional data represents a very challenging statistical learning problem, and manifold learning has become a very active research field aiming at discovering hidden structures from the statistical and geometric regularity inherent in many high-dimensional data. Reconstruction and synthesis of high-dimensional data in the context of interpolation and extrapolation will have significant applications in image and video processing, computer vision, video surveillance for homeland security, computational biology, and scientific visualization. The proposed theoretical tools and computational methods have the promise of significantly expanding the applicability and functionality of existing and new manifold learning methods and thus advancing the state of the art in nonlinear dimension reduction research. The proposed research lies at the interface between applied mathematics, computational science, and machine learning applications and provides an ideal setting for research cross-fertilization and collaboration as well as training of graduate students in interdisciplinary research.
该方案的目标是开发健壮的算法,用于基于从训练数据集中学习的低维表示来重建或合成高度结构化的高维数据,即流形学习中的内插和外推问题。该项目将解决在流形学习的各种内插和外推问题中计算通常不是很好定义的低维参数化的难以捉摸的问题,强调物理上有意义的参数化的概念。它将开发创新的计算方法,以便在无监督和半监督学习,特别是主动学习的背景下,灵活地学习低维参数化和其他物理上重要的变量,学习和合成动态数据,以及基于转移学习的流形外推。该项目包括一个公开可用的软件包的开发,该软件包将传播研究成果并促进非线性降维方法在现实世界问题中的应用。这项拟议研究的发现预计将影响到广泛的应用领域。计算高维数据的紧致表示是一个非常具有挑战性的统计学习问题,流形学习已经成为一个非常活跃的研究领域,目的是从许多高维数据固有的统计和几何规律中发现隐藏的结构。基于内插和外推的高维数据重建和合成在图像和视频处理、计算机视觉、国土安全视频监控、计算生物学和科学可视化等领域将有重要的应用。所提出的理论工具和计算方法有望极大地扩展现有和新的流形学习方法的适用性和功能,从而推动非线性降维研究的发展。拟议的研究位于应用数学、计算科学和机器学习应用程序之间,为研究交叉培养和协作以及培养跨学科研究的研究生提供了理想的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyuan Zha其他文献
A note on constructing a symmetric matrix with specified diagonal entries and eigenvalues
- DOI:
10.1007/bf01732616 - 发表时间:
1995-09-01 - 期刊:
- 影响因子:1.700
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
A Cubically Convergent Parallelizable Method for the Hermitian Eigenvalue Problem
厄米特征值问题的三次收敛并行化方法
- DOI:
10.1137/s0895479896302035 - 发表时间:
1998-04 - 期刊:
- 影响因子:0
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
Modifying the Generalized Singular Value Decomposition with Application in Direction-of-Arrival Finding
修正广义奇异值分解及其在波达方向查找中的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
Boundary-Eliminated Pseudoinverse Linear Discriminant for Imbalanced Problems
不平衡问题的边界消除伪逆线性判别式
- DOI:
10.1109/tnnls.2017.2676239 - 发表时间:
2018-06 - 期刊:
- 影响因子:10.4
- 作者:
Yujin Zhu;Zhe Wang;Hongyuan Zha;Daqi Gao - 通讯作者:
Daqi Gao
Structure and Perturbation Analysis of Truncated SVD for Column-Partitioned Matrices
列划分矩阵截断SVD的结构和摄动分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhenyue Zhang;Hongyuan Zha - 通讯作者:
Hongyuan Zha
Hongyuan Zha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyuan Zha', 18)}}的其他基金
III: Small: Exploring Social and Behavioral Contexts for Information Retrieval
III:小:探索信息检索的社会和行为背景
- 批准号:
1116886 - 财政年份:2011
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
III: EAGER: Learning Evaluation Metrics for Information Retrieval
III:EAGER:信息检索的学习评估指标
- 批准号:
1049694 - 财政年份:2010
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Computational Methods for Nonlinear Dimension Reduction
非线性降维的计算方法
- 批准号:
0736328 - 财政年份:2007
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Matrix Algorithms for Data Clustering and Nonlinear Dimension Reduction
用于数据聚类和非线性降维的矩阵算法
- 批准号:
0701796 - 财政年份:2006
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Manifold Learning from Unorganized High-dimensional Data Points
从无组织的高维数据点进行流形学习
- 批准号:
0701825 - 财政年份:2006
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Matrix Algorithms for Data Clustering and Nonlinear Dimension Reduction
用于数据聚类和非线性降维的矩阵算法
- 批准号:
0305879 - 财政年份:2003
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Manifold Learning from Unorganized High-dimensional Data Points
从无组织的高维数据点进行流形学习
- 批准号:
0311800 - 财政年份:2003
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Large-Scale Matrix Computation Problems in Information Retrieval and Datamining
信息检索和数据挖掘中的大规模矩阵计算问题
- 批准号:
9901986 - 财政年份:1999
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Numerical Methods for large Eigenvalue Problems: Parallizable Fast Algorithms and Inner-Outer iterations
大特征值问题的数值方法:可并行快速算法和内外迭代
- 批准号:
9619452 - 财政年份:1997
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
RIA: The Canonical Correlations: Numerical Algorithms and Extensions
RIA:规范相关性:数值算法和扩展
- 批准号:
9308399 - 财政年份:1993
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245380 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
- 批准号:
2307787 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Standard Grant