Numerical Methods for large Eigenvalue Problems: Parallizable Fast Algorithms and Inner-Outer iterations
大特征值问题的数值方法:可并行快速算法和内外迭代
基本信息
- 批准号:9619452
- 负责人:
- 金额:$ 12.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-03-01 至 1999-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project consists of two major parts: parallelizable fast algorithms for large dense eigenproblems and inexact/inner-outer iteration methods for large sparse eigenproblems. Techniques of rational transformation and matrix-squaring for designing parallelizable fast algorithms for large dense eigenproblems have been developed which only use matrix- matrix multiplications and QR decompositions as building blocks. Now a general theory is to be established to encompass the class of algorithms developed and to also provide guidance to the derivation of new algorithms. Error analysis, robust deflation techniques and stopping criteria which are extremely important for the practical implementation of the algorithms will be fully investigated. This part of the research will result in deeper understanding of the theory of a new class of generalized eigensolvers and deliver a class of algorithms that are truly of high parallel efficiency and robustness. Efficient algorithms for eigenproblems of partial differential equations is the major topic of the second part of this research. Inner-outer iteration type of algorithms will be developed for the subspace iteration and Lanczos algorithms and the insight obtained will be applied to the PDE case. It is demonstrated that different iterative processes behave quite differently with respect to the distribution of the accuracy of each inner iteration, and each iterative process needs a careful analysis in order to find the distribution strategy that will give the minimum number of total inner iteration steps. Two algorithms, the variable-accuracy inner-outer iteration method and the successive inner-outer iteration method will be further analyzed and their convergence behavior explained. A PDE eigenproblem will be solved by putting an iterative process such as the Lanczos method in a Hilbert space setting. At each Lanczos iteration step, the matrix-vector multiplication corresponds to solving a boundary value problem for the differential operator, and different discretizations will be used to enhance efficiency. The research will result in deeper understanding and provide sound theoretical results of various iterative processes for solving large sparse eigenproblems in the setting of inexact matrix-vector multiplication. It will also give more efficient algorithms for solving large sparse eigenproblems that arise in many science and engineering areas.
本研究计画包含两个主要部分:大型稠密特征值问题的可平行化快速演算法与大型稀疏特征值问题的不精确/内-外迭代法。 针对大型稠密特征值问题,提出了一种基于有理变换和矩阵平方的可并行快速算法,该算法仅使用矩阵-矩阵乘法和QR分解作为构造块。现在,一个一般的理论是建立包括类的算法开发,并提供指导,推导出新的算法。 误差分析,强大的放气技术和停止标准,这是非常重要的算法的实际实施将得到充分的研究。 这部分的研究将导致更深入的理解理论的一类新的广义特征值求解器,并提供一类算法,是真正的高并行效率和鲁棒性。 偏微分方程特征值问题的有效算法是本研究第二部分的主要内容。将为子空间迭代和Lanczos算法开发内外迭代类型的算法,并将所获得的见解应用于PDE情况。它表明,不同的迭代过程中表现出很大的不同,相对于每个内部迭代的精度分布,每个迭代过程需要仔细分析,以找到分配策略,将给最小数量的总内部迭代步骤。本文还对变精度内外迭代法和逐次内外迭代法两种算法作了进一步的分析,并解释了它们的收敛性。PDE特征问题将通过在希尔伯特空间设置中放置诸如Lanczos方法的迭代过程来解决。在每个Lanczos迭代步骤中,矩阵-向量乘法对应于求解边界值 问题的微分算子,不同的离散化将被用来提高效率。 该研究将导致更深入的理解,并提供良好的理论结果的各种迭代过程中解决大型稀疏特征值问题的设置不精确的矩阵向量乘法。它也将提供更有效的算法来解决在许多科学和工程领域出现的大型稀疏特征值问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongyuan Zha其他文献
A note on constructing a symmetric matrix with specified diagonal entries and eigenvalues
- DOI:
10.1007/bf01732616 - 发表时间:
1995-09-01 - 期刊:
- 影响因子:1.700
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
A Cubically Convergent Parallelizable Method for the Hermitian Eigenvalue Problem
厄米特征值问题的三次收敛并行化方法
- DOI:
10.1137/s0895479896302035 - 发表时间:
1998-04 - 期刊:
- 影响因子:0
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
Modifying the Generalized Singular Value Decomposition with Application in Direction-of-Arrival Finding
修正广义奇异值分解及其在波达方向查找中的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hongyuan Zha;Zhenyue Zhang - 通讯作者:
Zhenyue Zhang
Structure and Perturbation Analysis of Truncated SVD for Column-Partitioned Matrices
列划分矩阵截断SVD的结构和摄动分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zhenyue Zhang;Hongyuan Zha - 通讯作者:
Hongyuan Zha
Boundary-Eliminated Pseudoinverse Linear Discriminant for Imbalanced Problems
不平衡问题的边界消除伪逆线性判别式
- DOI:
10.1109/tnnls.2017.2676239 - 发表时间:
2018-06 - 期刊:
- 影响因子:10.4
- 作者:
Yujin Zhu;Zhe Wang;Hongyuan Zha;Daqi Gao - 通讯作者:
Daqi Gao
Hongyuan Zha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongyuan Zha', 18)}}的其他基金
Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning
合作研究:CDS
- 批准号:
1317372 - 财政年份:2013
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
III: Small: Exploring Social and Behavioral Contexts for Information Retrieval
III:小:探索信息检索的社会和行为背景
- 批准号:
1116886 - 财政年份:2011
- 资助金额:
$ 12.81万 - 项目类别:
Continuing Grant
III: EAGER: Learning Evaluation Metrics for Information Retrieval
III:EAGER:信息检索的学习评估指标
- 批准号:
1049694 - 财政年份:2010
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Computational Methods for Nonlinear Dimension Reduction
非线性降维的计算方法
- 批准号:
0736328 - 财政年份:2007
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Matrix Algorithms for Data Clustering and Nonlinear Dimension Reduction
用于数据聚类和非线性降维的矩阵算法
- 批准号:
0701796 - 财政年份:2006
- 资助金额:
$ 12.81万 - 项目类别:
Continuing Grant
Manifold Learning from Unorganized High-dimensional Data Points
从无组织的高维数据点进行流形学习
- 批准号:
0701825 - 财政年份:2006
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Matrix Algorithms for Data Clustering and Nonlinear Dimension Reduction
用于数据聚类和非线性降维的矩阵算法
- 批准号:
0305879 - 财政年份:2003
- 资助金额:
$ 12.81万 - 项目类别:
Continuing Grant
Manifold Learning from Unorganized High-dimensional Data Points
从无组织的高维数据点进行流形学习
- 批准号:
0311800 - 财政年份:2003
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Large-Scale Matrix Computation Problems in Information Retrieval and Datamining
信息检索和数据挖掘中的大规模矩阵计算问题
- 批准号:
9901986 - 财政年份:1999
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
RIA: The Canonical Correlations: Numerical Algorithms and Extensions
RIA:规范相关性:数值算法和扩展
- 批准号:
9308399 - 财政年份:1993
- 资助金额:
$ 12.81万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fast numerical methods for solving large-scale matrix equations
求解大规模矩阵方程的快速数值方法
- 批准号:
23K19951 - 财政年份:2023
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2021
- 资助金额:
$ 12.81万 - 项目类别:
Discovery Grants Program - Individual
Study on algorithms of numerical methods for large scale nonlinear optimization problems and their implementation
大规模非线性优化问题数值方法算法研究及其实现
- 批准号:
20K11698 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2020
- 资助金额:
$ 12.81万 - 项目类别:
Discovery Grants Program - Individual
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2019
- 资助金额:
$ 12.81万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Fluid-Structure Interaction Problems with Large Displacements
大位移流固耦合问题的数值方法
- 批准号:
1912908 - 财政年份:2019
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
Improving Numerical Methods for Large Eigenvalue Problems
改进大型特征值问题的数值方法
- 批准号:
1913364 - 财政年份:2019
- 资助金额:
$ 12.81万 - 项目类别:
Standard Grant
A study on numerical solution methods with stable and high accuracy for large-scale linear systems
大型线性系统稳定高精度数值求解方法研究
- 批准号:
18K11342 - 财政年份:2018
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
- 批准号:
RGPIN-2017-04152 - 财政年份:2018
- 资助金额:
$ 12.81万 - 项目类别:
Discovery Grants Program - Individual
Acceleration of the numerical solutions of structural optimization: Development of optimization methods for large-scale structures
结构优化数值求解的加速:大型结构优化方法的开发
- 批准号:
17K06633 - 财政年份:2017
- 资助金额:
$ 12.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)