CAREER: Statistical Models and Classification of Time-Varying Shape

职业:时变形状的统计模型和分类

基本信息

  • 批准号:
    1054057
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This project develops nonlinear statistical models and classification procedures for time-varying shape and investigates their application to biomedical image analysis problems. In biology and medicine it is often critical to understand processes that change the shape of anatomy. For example, a neuroscientist studying the development of the infant brain would be interested in how neurodevelopment is different in healthy children versus those with Autism. An evolutionary biologist studying how a species has evolved to adapt to its environment would be interested in studying changes in the shape of bones found in the fossil record. The challenge in this modeling problem is that shape and shape variations are highly nonlinear and high-dimensional, and standard linear statistics cannot be applied. Therefore, the ability to model and understand changes in shape depends on the development of new regression models for data in nonlinear spaces. The research activities of this project include: (1) developing statistical models for dealing with time-varying shape using least-squares principles in shape manifolds, (2) investigating new classification methods for shape sequences, and (3) validating the methodology using synthetic data and testing its efficacy for neuroimaging applications in Alzheimer's disease and Autism. In addition to the significant impact to computer vision, biology, and medicine, this project is combining differential geometry, statistics, and computing within the undergraduate and graduate computer science curriculum.
本计画针对时变形状发展非线性统计模型与分类程序,并探讨其在生物医学影像分析问题上的应用。在生物学和医学中,了解改变解剖结构形状的过程通常至关重要。例如,研究婴儿大脑发育的神经科学家会对健康儿童与自闭症儿童的神经发育有何不同感兴趣。一个研究物种如何进化以适应环境的进化生物学家,会对研究化石记录中发现的骨骼形状的变化感兴趣。这个建模问题的挑战在于形状和形状变化是高度非线性和高维的,并且不能应用标准线性统计。因此,建模和理解形状变化的能力取决于为非线性空间中的数据开发新的回归模型。该项目的研究活动包括:(1)使用形状流形中的最小二乘原理开发用于处理时变形状的统计模型,(2)研究形状序列的新分类方法,以及(3)使用合成数据验证该方法并测试其在阿尔茨海默病和自闭症神经成像应用中的功效。除了对计算机视觉,生物学和医学产生重大影响外,该项目还将微分几何,统计学和计算结合在本科和研究生计算机科学课程中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Preston Fletcher其他文献

Preston Fletcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Preston Fletcher', 18)}}的其他基金

Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
  • 批准号:
    2205417
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: The effects of spatial structure and heterogeneity on local adaptation, diversification, and dispersal evolution: Experimental tests and statistical models
职业:空间结构和异质性对局部适应、多样化和分散进化的影响:实验测试和统计模型
  • 批准号:
    2239197
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Models and Parallel-computing Methods for Analyzing Sparse and Large Single-cell Chromatin Interaction Datasets
职业:用于分析稀疏和大型单细胞染色质相互作用数据集的统计模型和并行计算方法
  • 批准号:
    2239350
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic and Statistical Foundations of Generative Models
职业:生成模型的信息理论和统计基础
  • 批准号:
    1942230
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: High-Dimensional Statistical Models for Unsupervised Learning
职业:无监督学习的高维统计模型
  • 批准号:
    1945667
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Valid and Scalable Inference for High-dimensional Statistical Models
职业:高维统计模型的有效且可扩展的推理
  • 批准号:
    1844481
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
  • 批准号:
    1339098
  • 财政年份:
    2012
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Bridging dynamical and statistical models of neural circuits -- a mechanistic approach to multi-spike synchrony
职业:桥接神经回路的动力学和统计模型——多尖峰同步的机械方法
  • 批准号:
    1056125
  • 财政年份:
    2011
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
  • 批准号:
    0746265
  • 财政年份:
    2008
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Novel Statistical Models and Computational Algorithms for Evolutionary Genomics
职业:进化基因组学的新颖统计模型和计算算法
  • 批准号:
    0546594
  • 财政年份:
    2006
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Career: Non-parametric Multi-scale Statistical Models for Natural Signals and Images
职业:自然信号和图像的非参数多尺度统计模型
  • 批准号:
    9875866
  • 财政年份:
    1999
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了