CAREER: Statistical Models and Parallel-computing Methods for Analyzing Sparse and Large Single-cell Chromatin Interaction Datasets

职业:用于分析稀疏和大型单细胞染色质相互作用数据集的统计模型和并行计算方法

基本信息

  • 批准号:
    2239350
  • 负责人:
  • 金额:
    $ 69.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

The 3D organization of nuclear chromatin plays a critical role in maintaining normal cellular functions. Recent development of single-cell Hi-C (scHi-C) technologies allows researchers to delineate the genome-wide chromatin interactions in individual cells and answer fundamental biological questions. However, computational methods for analyzing scHi-C data are largely lagging behind because of data sparsity, high diversity and complicated hierarchy of chromosomal organization. This project will address these challenges by building a suite of models and parallel tools for both experimental and computational biologists to analyze sparse and large scHi-C datasets, which will help them understand 3D chromatin interactions and gain deep insights into functional outcomes. The saturation model produced by this project will lead to a major improvement in experimental quality, enhanced data analysis, and reduced experimental costs. The integrated research and educational activities include diverse students training and curriculum development for both undergraduate and graduate courses in interdisciplinary subjects spanning computer science, statistics, bioinformatics and biology. The objectives of this project are to study the cell-specific chromatin organization at different scales by using stochastic theory, wavelet transform, and parallel-computing techniques. First, a stochastic model will be established to understand the saturation status of scHi-C data by evaluating the major protocol steps and sequencing depth. Second, multiscale-based methods will be designed for detecting topologically associated domains and protein-mediated loops, cell clustering, and comparative analysis. Third, all models and tools will be fully parallelized for processing large datasets. The high performance and running speed of these methods will help researchers achieve biological discoveries in a one-stop service, and save time and money for experiments and computational analysis. The software pipelines will be implemented by Python/R languages and publicly accessible through the GitHub repository https://github.com/chenyongrowan and a webserver at Rowan University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
核染色质的3D组织在维持正常细胞功能中起着关键作用。单细胞Hi-C(scHi-C)技术的最新发展使研究人员能够描绘单个细胞中的全基因组染色质相互作用,并回答基本的生物学问题。然而,用于分析scHi-C数据的计算方法由于数据稀疏、高度多样性和染色体组织的复杂层次而在很大程度上滞后。该项目将通过为实验和计算生物学家构建一套模型和并行工具来解决这些挑战,以分析稀疏和大型scHi-C数据集,这将有助于他们了解3D染色质相互作用并深入了解功能结果。该项目产生的饱和度模型将导致实验质量的重大改进,增强数据分析,并降低实验成本。综合研究和教育活动包括不同的学生培训和跨学科学科的本科生和研究生课程开发,涵盖计算机科学,统计学,生物信息学和生物学。本计画的目标是利用随机理论、小波变换及平行计算技术,研究不同尺度下细胞特异性染色质的组织。首先,将建立随机模型以通过评估主要方案步骤和测序深度来了解scHi-C数据的饱和状态。其次,将设计基于多尺度的方法来检测拓扑相关的结构域和蛋白质介导的环,细胞聚类和比较分析。第三,所有模型和工具将完全并行化,以处理大型数据集。这些方法的高性能和运行速度将帮助研究人员在一站式服务中实现生物学发现,并节省实验和计算分析的时间和金钱。该软件管道将通过Python/R语言实现,并通过GitHub存储库https://github.com/chenyongrowan和罗文大学的网络服务器公开访问。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YONG CHEN其他文献

Associations Between Dry Eye Disease and Mental Health Conditions in the All of Us Research Program
  • DOI:
    10.1016/j.ajo.2024.10.009
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    AARON T. ZHAO;JOCELYN HE;YUQING LEI;YONG CHEN;GUI-SHUANG YING
  • 通讯作者:
    GUI-SHUANG YING
Artemether/hydroxypropyl-beta-cyclodextrin host-guest system: Characterization, phase-solubility and inclusion mode
蒿甲醚/羟丙基-β-环糊精主客体系统:表征、相溶解度和包合模式
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    JUN LIN;BO YANG;YONG CHEN;YU LIU
  • 通讯作者:
    YU LIU
Blood supply characteristics of pedunculated hepatocellular carcinoma prior to and following transcatheter arterial chemoembolization treatment: An angiographic demonstration
带蒂肝细胞癌经导管动脉化疗栓塞治疗前后的血供特征:血管造影演示
  • DOI:
    10.3892/ol.2018.7844
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    DEXIAO HUANG;YONG CHEN;QINGLE ZENG;JIANBO ZHAO;XIZHONG WU;RENHUA WU;YANHAO LI
  • 通讯作者:
    YANHAO LI
Robust Dual-Color Watermarking Based on Quaternion Singular Value Decomposition
基于四元数奇异值分解的鲁棒双色水印
  • DOI:
    10.1109/access.2020.2973044
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    YONG CHEN;ZHIGANG JIA;YAN PENG1;YAXIN PENG
  • 通讯作者:
    YAXIN PENG
Triptolide exerted pro-apoptosis and cell cycle arrest activities on drug-resistance human lung cancer cells A549/Taxol via modulation of MAPK signaling pathways
雷公藤甲素通过调节 MAPK 信号通路对耐药人肺癌细胞 A549/Taxol 发挥促凋亡和细胞周期阻滞活性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    CHEN QIONG XIE;PING ZHOU;JIAN ZUO;XIANG LI;YONG CHEN;JIAN WEI CHEN
  • 通讯作者:
    JIAN WEI CHEN

YONG CHEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: The effects of spatial structure and heterogeneity on local adaptation, diversification, and dispersal evolution: Experimental tests and statistical models
职业:空间结构和异质性对局部适应、多样化和分散进化的影响:实验测试和统计模型
  • 批准号:
    2239197
  • 财政年份:
    2023
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic and Statistical Foundations of Generative Models
职业:生成模型的信息理论和统计基础
  • 批准号:
    1942230
  • 财政年份:
    2020
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
CAREER: High-Dimensional Statistical Models for Unsupervised Learning
职业:无监督学习的高维统计模型
  • 批准号:
    1945667
  • 财政年份:
    2020
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
CAREER: Valid and Scalable Inference for High-dimensional Statistical Models
职业:高维统计模型的有效且可扩展的推理
  • 批准号:
    1844481
  • 财政年份:
    2019
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
  • 批准号:
    1339098
  • 财政年份:
    2012
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Models and Classification of Time-Varying Shape
职业:时变形状的统计模型和分类
  • 批准号:
    1054057
  • 财政年份:
    2011
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
CAREER: Bridging dynamical and statistical models of neural circuits -- a mechanistic approach to multi-spike synchrony
职业:桥接神经回路的动力学和统计模型——多尖峰同步的机械方法
  • 批准号:
    1056125
  • 财政年份:
    2011
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
CAREER: Statistical Inference in Algebraic Models with Singularities
职业:具有奇点的代数模型中的统计推断
  • 批准号:
    0746265
  • 财政年份:
    2008
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
CAREER: Novel Statistical Models and Computational Algorithms for Evolutionary Genomics
职业:进化基因组学的新颖统计模型和计算算法
  • 批准号:
    0546594
  • 财政年份:
    2006
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
Career: Non-parametric Multi-scale Statistical Models for Natural Signals and Images
职业:自然信号和图像的非参数多尺度统计模型
  • 批准号:
    9875866
  • 财政年份:
    1999
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了