Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions

利用约束规划模型中的组合结构作为多元分布

基本信息

  • 批准号:
    RGPIN-2017-05783
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Many sectors of the economy rely on our ability to solve complex combinatorial problems in order to plan, organize, or schedule their activities in the best way possible. For example: scheduling nurses in a hospital according to their individual skills and preferences so that they cover the forecast demand in patient care, and assigning patients to them so as to achieve a balanced workload; or planning the construction of a forest road network in order to harvest and then transport the lumber, designing truck routes between harvesting sites and mills, and building synchronized schedules for trucks and loaders. Among the computerized methods to accomplish this, Constraint Programming represents the problem using a formalism that exposes much of its structure. This research proposes to use that structure in a deeper way in order to improve our ability to solve combinatorial problems. Any progress towards that general goal can apply to each of these sectors and therefore can have a significant impact on our productivity and well being.
经济的许多部门依赖于我们解决复杂组合问题的能力,以便以尽可能好的方式计划、组织或安排他们的活动。例如:根据护士的个人技能和喜好安排医院护士的时间,以满足病人护理的预测需求,并为他们分配病人,以实现工作量平衡;或规划建设森林公路网,以便收获木材并随后运输,设计收获地点和磨坊之间的卡车路线,以及为卡车和装载机建立同步时间表。在实现这一点的计算机化方法中,约束编程使用一种形式主义来表示问题,这种形式主义暴露了问题的大部分结构。这项研究建议更深入地使用这种结构,以提高我们解决组合问题的能力。实现这一总目标的任何进展都可以适用于这些部门,因此可以对我们的生产力和福祉产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pesant, Gilles其他文献

The Synchronized Dynamic Vehicle Dispatching Problem
  • DOI:
    10.3138/infor.51.2.76
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Rousseau, Louis-Martin;Gendreau, Michel;Pesant, Gilles
  • 通讯作者:
    Pesant, Gilles
Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare
  • DOI:
    10.1287/trsc.2019.0956
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Doulabi, Hossein Hashemi;Pesant, Gilles;Rousseau, Louis-Martin
  • 通讯作者:
    Rousseau, Louis-Martin
A Constraint-Programming-Based Branch-and-Price-and-Cut Approach for Operating Room Planning and Scheduling
  • DOI:
    10.1287/ijoc.2015.0686
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Doulabi, Seyed Hossein Hashemi;Rousseau, Louis-Martin;Pesant, Gilles
  • 通讯作者:
    Pesant, Gilles

Pesant, Gilles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pesant, Gilles', 18)}}的其他基金

Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2020
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2019
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2018
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2017
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
"Counting-Based Search in Constraint Programming: Ongoing Design, Analysis, and Application to Solve Practical Combinatorial Satisfaction and Optimization Problems"
“约束规划中基于计数的搜索:持续设计、分析和应用,以解决实际的组合满足和优化问题”
  • 批准号:
    218028-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
"Counting-Based Search in Constraint Programming: Ongoing Design, Analysis, and Application to Solve Practical Combinatorial Satisfaction and Optimization Problems"
“约束规划中基于计数的搜索:持续设计、分析和应用,以解决实际的组合满足和优化问题”
  • 批准号:
    218028-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
"Counting-Based Search in Constraint Programming: Ongoing Design, Analysis, and Application to Solve Practical Combinatorial Satisfaction and Optimization Problems"
“约束规划中基于计数的搜索:持续设计、分析和应用,以解决实际的组合满足和优化问题”
  • 批准号:
    218028-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
"Counting-Based Search in Constraint Programming: Ongoing Design, Analysis, and Application to Solve Practical Combinatorial Satisfaction and Optimization Problems"
“约束规划中基于计数的搜索:持续设计、分析和应用,以解决实际的组合满足和优化问题”
  • 批准号:
    218028-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
"Counting-Based Search in Constraint Programming: Ongoing Design, Analysis, and Application to Solve Practical Combinatorial Satisfaction and Optimization Problems"
“约束规划中基于计数的搜索:持续设计、分析和应用,以解决实际的组合满足和优化问题”
  • 批准号:
    218028-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combinatorial Structures in Cluster Algebras
簇代数中的组合结构
  • 批准号:
    2246570
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
  • 批准号:
    22K03398
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial Microscopies: Platforms for Probing Molecular and Cellular Dynamics and Structures
组合显微镜:探测分子和细胞动力学和结构的平台
  • 批准号:
    RGPIN-2022-04837
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial designs with cyclic structures for designs of experiments, combinatorial testing, and codes
用于实验设计、组合测试和代码的循环结构组合设计
  • 批准号:
    22K13949
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorial structures in quantum field theory
量子场论中的组合结构
  • 批准号:
    RGPIN-2019-04412
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
  • 批准号:
    RGPIN-2017-04157
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial and Algebraic Structures in Dynamics
动力学中的组合和代数结构
  • 批准号:
    2054643
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
  • 批准号:
    RGPIN-2017-04157
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Structures associated with Classical Finite Simple Groups
与经典有限单群相关的组合结构
  • 批准号:
    2608958
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了