CAREER:Self-Healing Under Flow: From Single Molecule Dynamics to Regenerative Scaffold Formation
职业:流动下的自我修复:从单分子动力学到再生支架的形成
基本信息
- 批准号:1054671
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical SummaryThis CAREER award supports theoretical and computational research and education on self-healing under flow, inspired by the ubiquitous, yet far from understood, process of blood clotting. When blood clots, a biopolymer-cellular network that plugs the leak and heals the wound is developed in response to chemical and mechanical stimuli. The formation of these networks in flow constitutes a new paradigm in biopolymer science, and has the potential to uncover new properties of these biomaterials since they are formed under strong non-equilibrium conditions. The work here proposed will utilize theory and simulations to unravel the overall formation process of these polymer-cell composites from a microscopic point of view to gain fundamental knowledge of the process of self-assembly, adhesion, and self-healing in complex flows, providing not only knowledge on how clots are initiated and controlled, but a guideline for future studies that address the problem of self-assembly in flow. Ultimately, we believe that by exploiting flow-induced interactions and molecular conformational changes, a new set of materials principles can emerge with applications in a wide variety of fields including drug-delivery, coatings and sealing agents, self-regenerative materials, and adhesives. This project also aims to inspire younger people to pursue a career in science and be the next generation of outstanding researchers. Education and outreach activities will include summer mentoring of minority students from local community colleges, the development of integrated courses that employ cyberinfrastructure, and the creation of a computational suite that will allow students from all ages to interact and experiment with soft-materials.Non-technical Summary This CAREER award supports theoretical and computational research and education on self-healing under flow inspired by how blood clots. A clot is formed in blood by accumulating and sticking together many platelets at the site of injury. In strong flowing conditions, however, platelets cannot stick to themselves and thus no clot can be formed. To alleviate this deficiency nature has developed the von Willebrand factor, a long responsive biopolymer which is a large molecule with repeating blocks of atoms. The von Willebrand factor unravels and exposes a bunch of sticky sites with which it interconnects platelets, as well as stick them to the injury site. The biopolymer-platelet composite is called the plug and it is our body's first response to an injured vessel. However, the process by which this plug forms is still far from understood. This project aims to elucidate the mechanism by which clots form using theory and simulations. It will develop a microscopic view of the important processes occurring during plug formation. This research contributes theoretical guidance for creating novel materials in a wide variety of technologically relevant fields such as drug-delivery, coatings and sealing agents, self-regenerative materials, and adhesives. This project also aims to inspire younger people to pursue a career in science and be the next generation of outstanding researchers. Education and outreach activities will include summer mentoring of minority students from local community colleges, the development of integrated courses that employ cyberinfrastructure, and the creation of a computational suite that will allow students from all ages to interact and experiment with soft-materials like plastics.
技术概述这个职业奖项支持在血流作用下自我修复的理论和计算研究和教育,灵感来自于无处不在但远未被理解的血液凝结过程。当血液凝结时,一种生物聚合物-细胞网络会对化学和机械刺激做出反应,从而堵塞泄漏并愈合伤口。这些流动网络的形成构成了生物聚合物科学的新范式,并有可能揭示这些生物材料的新性质,因为它们是在强烈的非平衡条件下形成的。本文提出的工作将利用理论和模拟从微观角度解开这些聚合物-细胞复合材料的整个形成过程,以获得复杂流动中自组装、粘合和自我修复过程的基础知识,不仅提供关于凝块如何引发和控制的知识,而且为未来解决流动中自组装问题的研究提供指导。最终,我们相信,通过利用流动诱导的相互作用和分子构象变化,一套新的材料原理可以出现在广泛的领域,包括药物输送、涂层和密封剂、自再生材料和粘合剂。该项目还旨在激励年轻人追求科学事业,成为下一代杰出的研究人员。教育和外展活动将包括对当地社区大学的少数族裔学生的暑期指导,开发使用网络基础设施的综合课程,以及创建一个计算套件,允许所有年龄段的学生与软材料互动和实验。非技术总结这个职业奖项支持理论和计算研究,以及在血液凝块启发下的自我修复教育。血液中的血栓是通过在损伤部位聚集和粘连许多血小板而形成的。然而,在强烈的流动条件下,血小板不能粘住自己,因此不会形成凝块。为了缓解这一缺陷,自然界开发出了von Willebrand因子,这是一种长响应的生物聚合物,是一种具有重复原子块的大分子。Von Willebrand因子解体并暴露出一堆粘性部位,它们与血小板相互连接,并将它们粘在损伤部位。这种生物聚合物-血小板复合材料被称为塞子,它是我们身体对受损血管的第一反应。然而,这个塞子形成的过程仍然远未被理解。本项目旨在通过理论和模拟来阐明血栓形成的机制。它将对堵塞物形成过程中发生的重要过程进行微观观察。这项研究为在药物输送、涂层和密封剂、自再生材料和粘合剂等广泛的技术相关领域创造新材料提供了理论指导。该项目还旨在激励年轻人追求科学事业,成为下一代杰出的研究人员。教育和外展活动将包括对当地社区大学的少数族裔学生进行暑期辅导,开发使用网络基础设施的综合课程,以及创建一个计算套件,允许所有年龄段的学生与塑料等软材料进行互动和实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alfredo Alexander-Katz其他文献
Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics
- DOI:
10.1007/s13346-014-0198-7 - 发表时间:
2014-05-09 - 期刊:
- 影响因子:5.500
- 作者:
Albert Chi;Sebastian Curi;Kevin Clayton;David Luciano;Kameron Klauber;Alfredo Alexander-Katz;Sebastian D’hers;Noel M. Elman - 通讯作者:
Noel M. Elman
Designing single-polymer-chain nanoparticles to mimic biomolecular hydration frustration
设计单聚合物链纳米粒子以模拟生物分子水合受挫
- DOI:
10.1038/s41557-025-01760-9 - 发表时间:
2025-03-12 - 期刊:
- 影响因子:20.200
- 作者:
Tianyi Jin;Connor W. Coley;Alfredo Alexander-Katz - 通讯作者:
Alfredo Alexander-Katz
Nanoporosity Influences Membrane Curvature and Subsequent Endocytosis
- DOI:
10.1016/j.bpj.2017.11.3024 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Alexis Belessiotis-Richards;Molly M. Stevens;Alfredo Alexander-Katz - 通讯作者:
Alfredo Alexander-Katz
PIP2 Lipids as Regulators of Membrane Curvature Sensing by Enth Domains
- DOI:
10.1016/j.bpj.2018.11.538 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Alexis Belessiotis-Richards;Molly M. Stevens;Alfredo Alexander-Katz - 通讯作者:
Alfredo Alexander-Katz
Alfredo Alexander-Katz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alfredo Alexander-Katz', 18)}}的其他基金
Collaborative Research: DMREF: Designer 3D Mesoscale Materials Synthesized in the Self-Assembly Foundry
合作研究:DMREF:在自组装铸造厂合成的设计师 3D 介观尺度材料
- 批准号:
2118678 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
SNM: Inverse Design of Nanostructured Heterogeneous Materials
SNM:纳米结构异质材料的逆向设计
- 批准号:
1246740 - 财政年份:2013
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
International Research Fellowship Program: Driving Fluids with Rotating and Beating Semiflexible Polymers
国际研究奖学金计划:用旋转和跳动半柔性聚合物驱动流体
- 批准号:
0401508 - 财政年份:2004
- 资助金额:
$ 47.5万 - 项目类别:
Fellowship Award
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
- 批准号:81501521
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
- 批准号:11301190
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
- 批准号:11126152
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
- 批准号:81001041
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
- 批准号:31070711
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Creating pH-sensitive self-healing concrete using sludge waste for sewers
利用下水道污泥废物制造 pH 敏感的自修复混凝土
- 批准号:
DP230100688 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Projects
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
- 批准号:
DP240100851 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Projects
CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
- 批准号:
2339162 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
CAREER: Development of Self-Healing Electrocatalysts via a Tunable Non-Covalent Design
职业:通过可调谐非共价设计开发自修复电催化剂
- 批准号:
2338351 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
RII Track-4: NSF: Self-healing Modular Panels for Space and Lunar Missions
RII Track-4:NSF:用于太空和月球任务的自愈模块化面板
- 批准号:
2327424 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Field, laboratory and modelling constraints on fluid transport in fractured mudrocks with a focus on chemical self-healing
裂隙泥岩中流体输送的现场、实验室和建模约束,重点是化学自修复
- 批准号:
2891563 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Studentship
STTR Phase I: Self-healing Power Electronics for Urban Air Mobility Applications
STTR 第一阶段:用于城市空中交通应用的自愈电力电子设备
- 批准号:
2233521 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAREER: Autonomous, Rapid Self-Healing and Ultra-Stretchable Electronic Polymer Research & Education for Outreach and Student Success in STEM
职业:自主、快速自愈和超可拉伸电子聚合物研究
- 批准号:
2305282 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Research on Practical Application of Self-healing Ground Improvement Methods for an Era of Frequent Disasters
灾害频发时代自愈地基改良方法的实际应用研究
- 批准号:
23H01504 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on optimization of low-intensity ultrasonic irradiation conditions for ultrasonic therapy to activate self-healing power
超声治疗激活自愈力低强度超声照射条件优化研究
- 批准号:
23H03753 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)