SNM: Inverse Design of Nanostructured Heterogeneous Materials

SNM:纳米结构异质材料的逆向设计

基本信息

项目摘要

This Scalable NanoManufacturing (SNM) grant provides funding for the development of a computational platform that will enable the synthesis of heterogeneous hierarchical nanomaterials in a prescribed and efficient manner. Such materials will be formed using block copolymer self-assembly on graphoepitaxial templates, a process known as templated self-assembly. The developed numerical tool will solve the inverse problem for the self-assembly process in which the input is the final nanoscale pattern (the target), and the output is the optimal template configuration that will yield such pattern given a set of constraints. The developed inverse self-assembly algorithm will be implemented in advanced parallel computational architectures such as graphic processing units. The algorithm will be tested in three different cases: periodic patterns with non-trivial symmetries, precise arrangement of nanoparticles in block copolymer matrices, and the interconnection of patterns with different symmetries. Experiments for each of the aforementioned cases will be performed to validate the computational results. If successful, this research will lead to novel algorithms in solving the inverse self-assembly problem that in turn will lead to advances in the manufacturing of heterogeneous nanoscale materials. The primary goal of this project is to develop a toolkit that will determine the optimal templates for a given target pattern. Solving such problem on the computer in a directed and optimal fashion will reduce the costs and time to empirically construct the templates used in templated self-assembly. This has the potential to reduce the overall costs of nanomanufacturing by accelerating the processes and increasing the fidelity of the patterns for lithographic applications such as those needed in the semiconductor industry.
这项可伸缩纳米制造(SNM)赠款为计算平台的开发提供资金,该平台将能够以规定和有效的方式合成不同种类的分级纳米材料。这种材料将利用嵌段共聚物在梯度外延模板上的自组装形成,这一过程被称为模板自组装。所开发的数值工具将解决自组装过程的逆问题,其中输入是最终的纳米级图案(目标),输出是在给定一组约束的情况下产生此类图案的最佳模板配置。开发的逆自组装算法将在高级并行计算体系结构中实现,如图形处理单元。该算法将在三种不同的情况下进行测试:具有非平凡对称性的周期性图案,纳米粒子在嵌段共聚矩阵中的精确排列,以及不同对称性图案的互连。将对上述每种情况进行实验,以验证计算结果。如果成功,这项研究将带来解决反向自组装问题的新算法,这反过来将导致异质纳米材料制造的进步。这个项目的主要目标是开发一个工具包,它将为给定的目标模式确定最佳模板。在计算机上以定向和优化的方式解决这样的问题将减少经验地构建用于模板化自组装的模板的成本和时间。这有可能通过加速工艺和提高用于光刻应用的图案的保真度来降低纳米制造的总体成本,例如半导体行业所需的那些应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alfredo Alexander-Katz其他文献

Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics
  • DOI:
    10.1007/s13346-014-0198-7
  • 发表时间:
    2014-05-09
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Albert Chi;Sebastian Curi;Kevin Clayton;David Luciano;Kameron Klauber;Alfredo Alexander-Katz;Sebastian D’hers;Noel M. Elman
  • 通讯作者:
    Noel M. Elman
Designing single-polymer-chain nanoparticles to mimic biomolecular hydration frustration
设计单聚合物链纳米粒子以模拟生物分子水合受挫
  • DOI:
    10.1038/s41557-025-01760-9
  • 发表时间:
    2025-03-12
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Tianyi Jin;Connor W. Coley;Alfredo Alexander-Katz
  • 通讯作者:
    Alfredo Alexander-Katz
Nanoporosity Influences Membrane Curvature and Subsequent Endocytosis
  • DOI:
    10.1016/j.bpj.2017.11.3024
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Alexis Belessiotis-Richards;Molly M. Stevens;Alfredo Alexander-Katz
  • 通讯作者:
    Alfredo Alexander-Katz
PIP2 Lipids as Regulators of Membrane Curvature Sensing by Enth Domains
  • DOI:
    10.1016/j.bpj.2018.11.538
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Alexis Belessiotis-Richards;Molly M. Stevens;Alfredo Alexander-Katz
  • 通讯作者:
    Alfredo Alexander-Katz

Alfredo Alexander-Katz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alfredo Alexander-Katz', 18)}}的其他基金

Collaborative Research: DMREF: Designer 3D Mesoscale Materials Synthesized in the Self-Assembly Foundry
合作研究:DMREF:在自组装铸造厂合成的设计师 3D 介观尺度材料
  • 批准号:
    2118678
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CAREER:Self-Healing Under Flow: From Single Molecule Dynamics to Regenerative Scaffold Formation
职业:流动下的自我修复:从单分子动力学到再生支架的形成
  • 批准号:
    1054671
  • 财政年份:
    2011
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
International Research Fellowship Program: Driving Fluids with Rotating and Beating Semiflexible Polymers
国际研究奖学金计划:用旋转和跳动半柔性聚合物驱动流体
  • 批准号:
    0401508
  • 财政年份:
    2004
  • 资助金额:
    $ 120万
  • 项目类别:
    Fellowship Award

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials
软材料建模和逆向设计的对抗性学习方法
  • 批准号:
    2306101
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
FET/SHF: Small: Reinforcement learning and transformer inspired smart photonics inverse design
FET/SHF:小型:强化学习和变压器启发的智能光子逆设计
  • 批准号:
    2309403
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
ERI: Multilevel Inverse Robust Co-Design of Materials, Products, and Manufacturing Processes
ERI:材料、产品和制造工艺的多级逆稳健协同设计
  • 批准号:
    2301808
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
  • 批准号:
    2339804
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Advanced Flow Prediction of Scramjet Intakes and Data-Driven Inverse Design
超燃冲压发动机进气口的高级流量预测和数据驱动的逆向设计
  • 批准号:
    22KJ2460
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NRT-AI: Harnessing AI for Inverse Design Training in Advanced and Sustainable Composites (IDeAS Composites)
NRT-AI:利用人工智能进行先进和可持续复合材料的逆向设计培训(IDeAS Composites)
  • 批准号:
    2244342
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245299
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Inverse Design and Mechanics of Hybrid Filler Composites with Solid and Liquid Inclusions
固体和液体夹杂物混合填料复合材料的逆向设计和力学
  • 批准号:
    2306613
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
IDEA: Inverse Design of Electrochemical Interfaces with Explainable AI
IDEA:利用可解释的人工智能进行电化学界面的逆向设计
  • 批准号:
    EP/W03722X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了