CAREER: Scalable Bayesian learning for multi-source and multi-aspect data

职业:针对多源和多方面数据的可扩展贝叶斯学习

基本信息

  • 批准号:
    1054903
  • 负责人:
  • 金额:
    $ 51.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Data of growing complexity come from multiple sources with multiple aspects. These data present us with unprecedented opportunities to integrate them with predictive models to extract complex relationships among natural and man-made objects.The PI brings together models and techniques encountered in various areas, such as Bayesian statistics, computational science, and systems biology, to develop new methodologies and tools for multi-source and multi-aspect data analysis. The intellectual merit includes (i) new constrained sparse Bayesian models to make interpretable predictions in their application domains, (ii) nonparametric multi-view and multi-way models to reveal unknown complex relationships between different data sources and aspects, and (iii) scalable inference to make advanced Bayesian methods practical data analysis tools.The PI collaborates with domain experts to model online user behavior, facilitate neurologists to elucidate brain functions and help pharmaceutical researchers identify key biomarkers for drug discovery. The PI incorporates the research results into new courses he teaches, organizes workshops, and recruits graduate and undergraduate students to conduct research for this project.For further information see the project web site at the URL: http://www.cs.purdue.edu/~alanqi/projects/learning-multi-source-aspect-data
日益复杂的数据来自多个方面的多个来源。这些数据为我们提供了前所未有的机会,将它们与预测模型相结合,以提取自然和人造物体之间的复杂关系。PI汇集了贝叶斯统计、计算科学和系统生物学等各个领域遇到的模型和技术,以开发用于多源和多方面数据分析的新方法和工具。智力价值包括(i)新的约束稀疏贝叶斯模型,在其应用领域中做出可解释的预测,(ii)非参数多视图和多路模型,以揭示不同数据源和方面之间未知的复杂关系,以及(iii)可扩展推理,使先进的贝叶斯方法成为实用的数据分析工具。PI与领域专家合作,对在线用户行为进行建模,促进神经学家阐明大脑功能并帮助 制药研究人员确定药物发现的关键生物标志物。 PI 将研究成果融入到他教授的新课程中,组织研讨会,并招募研究生和本科生为该项目进行研究。有关更多信息,请参阅项目网站,网址为:http://www.cs.purdue.edu/~alanqi/projects/learning-multi-source-aspect-data

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Qi其他文献

Atmospheric fine particles in a typical coastal port of Yangtze River Delta
长三角典型沿海港口大气细颗粒物
  • DOI:
    10.1016/j.jes.2020.05.026
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Yuan Qi;Teng Xiaomi;Tu Shaoxuan;Feng Binxin;Wu Zhiyu;Xiao Hang;Cai Qiuliang;Zhang Yinxiao;Lin Qiuhan;Liu Zhaoce;He Mengmeng;Ding Xiaokun;Li Weijun
  • 通讯作者:
    Li Weijun
Graph Attention Network with Focal Loss for Seizure Detection on Electroencephalography Signals
具有焦点损失的图注意网络用于脑电图信号的癫痫发作检测
  • DOI:
    10.1142/s0129065721500271
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Zhao Yanna;Zhang Gaobo;Dong Changxu;Yuan Qi;Xu Fangzhou;Zheng Yuanjie
  • 通讯作者:
    Zheng Yuanjie
Formation-Control Stability and Communication Capacity of Multiagent Systems: A Joint Analysis
多智能体系统的编队控制稳定性和通信能力:联合分析
Plaque characteristics of culprit lesions in patients with unstable angina with and without diabetes and their relationship with outcomes of PCI: IVUS analysis
伴有或不伴有糖尿病的不稳定型心绞痛患者罪魁祸首斑块特征及其与 PCI 结局的关系:IVUS 分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi’an Yao;Yuan Qi;Yan Lai;Wenwen Yan;Yu Tang;Keke Ding;Zi Ye;Jiani Tang;Xuebo Liu
  • 通讯作者:
    Xuebo Liu
C-terminal domain of gyrase A is predicted to have a beta-propeller structure.
预测旋转酶 A 的 C 端结构域具有 β 螺旋桨结构。

Yuan Qi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Qi', 18)}}的其他基金

CDI Type I: Collaborative Research: Integration of relational learning with ab-initio methods for prediction of material properties
CDI I 型:协作研究:将关系学习与从头开始的方法相结合,用于预测材料特性
  • 批准号:
    0941533
  • 财政年份:
    2010
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
RI:Small: Relational learning and inference for network models
RI:Small:网络模型的关系学习和推理
  • 批准号:
    0916443
  • 财政年份:
    2009
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
  • 批准号:
    2242590
  • 财政年份:
    2024
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
Scalable Bayesian Reinforcement Learning in the Games Industry
游戏行业中的可扩展贝叶斯强化学习
  • 批准号:
    2890029
  • 财政年份:
    2023
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Studentship
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
Scalable Bayesian Methods for Sampling From Complex Probability Distributions
用于从复杂概率分布中采样的可扩展贝叶斯方法
  • 批准号:
    566614-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Elements: Scalable Bayesian Software for Interpreting Astronomical Images
Elements:用于解释天文图像的可扩展贝叶斯软件
  • 批准号:
    2209720
  • 财政年份:
    2022
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
  • 批准号:
    2153704
  • 财政年份:
    2022
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Continuing Grant
Scalable and Robust Bayesian Inference for Implicit Statistical Models
隐式统计模型的可扩展且稳健的贝叶斯推理
  • 批准号:
    FT210100260
  • 财政年份:
    2022
  • 资助金额:
    $ 51.18万
  • 项目类别:
    ARC Future Fellowships
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
  • 批准号:
    RGPIN-2019-03962
  • 财政年份:
    2022
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
  • 批准号:
    RGPIN-2017-06375
  • 财政年份:
    2022
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Bayesian Statistical Machine Learning for Multi-modal Data with Applications to Multiple Sclerosis
多模态数据的可扩展贝叶斯统计机器学习及其在多发性硬化症中的应用
  • 批准号:
    2740724
  • 财政年份:
    2022
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了