CAREER: Mixed-Integer Optimization under Joint Chance Constraints
职业:联合机会约束下的混合整数优化
基本信息
- 批准号:1055668
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Faculty Early Career Development (CAREER) project is to advance models, theory and algorithms to solve a difficult class of optimization problems called chance-constrained mixed-integer programs (CC-MIP). Although CC-MIPs are ubiquitous in practice, operations research theory and algorithms provide limited guidance for this class of problems. CC-MIPs include quality of service or reliability constraints; they are dynamic, contain uncertain data, and involve discrete decisions. The resulting multi-stage stochastic mixed-integer programs are challenging both theoretically and computationally. The service level requirements are modeled with joint chance constraints, which are non-convex. In addition, the deterministic equivalents of CC-MIPs are very large-scale MIPs. To overcome these challenges, this research aims to develop a unified theory and computational methodology, utilizing extended formulations, polyhedral combinatorics, and decomposition algorithms. The research will be pursued in four major thrusts: (1) chance-constrained mixed-integer programs, (2) dynamic chance-constrained problems, (3) chance-constrained problems with special structures, and (4) chance-constrained problems with technology uncertainty. The results from this research will advance decision-making tools in several sectors that operate under uncertain environments and high service level expectations, such as energy, telecommunications, finance, emergency management, and distribution systems. For example, the modeling framework and strong cutting planes for joint chance constraints may be incorporated into existing open-source MIP modeling languages and software to improve their ability to solve CC-MIPs that arise in practice. The educational goals of this award are to develop novel programs that will arm the next generation of students with skills to incorporate uncertainty into optimization theory, models and solution methods, and to attract women and other under-represented groups to pursue advanced research in this field. In pursuit of these goals, case studies will be developed from application areas to highlight the importance of incorporating uncertainty into decision-making processes, and tutorials will be given through various fora to disseminate the research results to a broader audience.
这个教师早期职业发展(CAREER)项目的研究目标是推进模型,理论和算法,以解决一类困难的优化问题,称为机会约束混合整数规划(CC-MIP)。 虽然CC-MIP在实践中是普遍存在的,运筹学理论和算法提供了有限的指导,这类问题。 CC-MIP包括服务质量或可靠性约束,它们是动态的,包含不确定的数据,并涉及离散的决策。由此产生的多阶段随机混合整数规划在理论和计算上都具有挑战性。服务水平的需求建模与联合机会约束,这是非凸的。此外,CC-MIP的确定性等价物是非常大规模的MIP。为了克服这些挑战,本研究的目的是开发一个统一的理论和计算方法,利用扩展配方,多面体组合学和分解算法。本研究将在四个主要方向进行:(1)机会约束混合整数规划,(2)动态机会约束问题,(3)特殊结构的机会约束问题,(4)技术不确定性的机会约束问题。这项研究的结果将推动在不确定环境和高服务水平期望下运营的几个部门的决策工具,如能源,电信,金融,应急管理和配电系统。例如,用于联合机会约束的建模框架和强切割平面可以被并入现有的开源MIP建模语言和软件中,以提高它们解决实践中出现的CC-MIP的能力。 该奖项的教育目标是开发新颖的计划,将武装下一代学生的技能,将不确定性纳入优化理论,模型和解决方案的方法,并吸引妇女和其他代表性不足的群体在这一领域进行先进的研究。为了实现这些目标,将从应用领域开展案例研究,以突出将不确定性纳入决策过程的重要性,并将通过各种论坛提供指导,向更广泛的受众传播研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simge Kucukyavuz其他文献
Simge Kucukyavuz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simge Kucukyavuz', 18)}}的其他基金
Collaborative Research: CIF: Small: Convexification-based Decomposition Methods for Large-Scale Inference in Graphical Models
合作研究:CIF:小型:图模型中大规模推理的基于凸化的分解方法
- 批准号:
2007814 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: 2018 Mixed Integer Programming Workshop Poster Session, Greenville, South Carolina, June 18-21, 2018
协作研究:2018 年混合整数编程研讨会海报会议,南卡罗来纳州格林维尔,2018 年 6 月 18 日至 21 日
- 批准号:
1841303 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
- 批准号:
1907463 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
- 批准号:
1733001 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Mixed-Integer Optimization under Joint Chance Constraints
职业:联合机会约束下的混合整数优化
- 批准号:
1732364 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
- 批准号:
1537317 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Stochastic Mixed-Integer Optimization: Polyhedral Theory, Large-Scale Algorithms and Computations
随机混合整数优化:多面体理论、大规模算法和计算
- 批准号:
1100383 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mixed-Integer Optimization for Multi-Item Multi-Echelon Production and Distribution Planning
多项目多梯次生产和配送计划的混合整数优化
- 批准号:
0824480 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mixed-Integer Optimization for Multi-Item Multi-Echelon Production and Distribution Planning
多项目多梯次生产和配送计划的混合整数优化
- 批准号:
0917952 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
- 批准号:82302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
- 批准号:
2246022 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Student Support for Mixed Integer Programming Workshop, Poster Session and Computational Competition, 2023 - 2025
混合整数编程研讨会、海报会议和计算竞赛的学生支持,2023 - 2025
- 批准号:
2326892 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
- 批准号:
532673-2019 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
Theory, computations and applications of structured Mixed-Integer Programs
结构化混合整数程序的理论、计算和应用
- 批准号:
RGPIN-2020-04030 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
2022 Mixed Integer Programming Workshop Poster Session and Computational Competition; New Brunswick, New Jersey; May 24-26, 2022
2022年混合整数规划研讨会海报会议及计算竞赛;
- 批准号:
2211222 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
- 批准号:
RGPIN-2021-02475 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
- 批准号:
532673-2019 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
MAiNGO – McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization
MAiNGO – 基于 McCormick 的混合整数非线性全局优化算法
- 批准号:
442664501 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Analog Digital Mixed-Signal Integrated Circuit Architecture based on Integer Theory
基于整数理论的模拟数字混合信号集成电路结构
- 批准号:
21K04190 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




