Stochastic Mixed-Integer Optimization: Polyhedral Theory, Large-Scale Algorithms and Computations
随机混合整数优化:多面体理论、大规模算法和计算
基本信息
- 批准号:1100383
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award focuses on a class of constrained optimization problems in which data are uncertain, and some decisions need to be made before uncertainty about the data clears (first-stage). The remaining decisions are made once the data becomes more reliable (second-stage). In addition, these problems involve both discrete and continuous decisions, and hence are referred to as Two-stage Stochastic Mixed-Integer Programs (SMIP). The goal of this project is to integrate recently developed integer programming tools based on multi-term disjunctions, and stochastic programming ideas based on decomposition and coordination. These tools will provide the basis for sequential convexification of SMIP problems, and will allow their solution via a finite sequence of approximations. These algorithms will be implemented and rigorously tested on a wide variety of instances.If successful, this project will allow engineers to add greater intelligence to software that is used in engineering design, contingency planning in manufacturing, military operations planning, and many more. For these and other real-world engineering problems, the exact setting of future operations is impossible to predict accurately, and SMIP provides a formal basis to cope with the uncertainty. While these issues are ubiquitous in most operations, there is a serious paucity of methodologies that can solve such computational problems. The widespread applicability of the proposed methodology is expected to transform the way in which discrete decisions are made in an uncertain environment. Moreover, results from this project will build a unifying theory for discrete and continuous optimization under uncertainty.
该奖项专注于一类约束优化问题,其中数据是不确定的,并且需要在数据的不确定性清除之前做出一些决策(第一阶段)。一旦数据变得更加可靠,就做出剩余的决定(第二阶段)。 此外,这些问题涉及离散和连续的决策,因此被称为两阶段随机混合规划(SMIP)。这个项目的目标是整合最近开发的整数规划工具的基础上多项析取,和随机规划思想的基础上分解和协调。这些工具将为SMIP问题的连续凸化提供基础,并允许通过有限序列的近似来解决这些问题。这些算法将在各种各样的实例中实施和严格测试。如果成功,该项目将允许工程师为工程设计、制造业应急计划、军事行动计划等中使用的软件添加更大的智能。对于这些和其他现实世界的工程问题,未来操作的确切设置是不可能准确预测的,SMIP提供了一个正式的基础来科普不确定性。虽然这些问题在大多数操作中是普遍存在的,但可以解决这些计算问题的方法严重缺乏。所提出的方法的广泛适用性,预计将改变在不确定的环境中作出离散的决定的方式。此外,该项目的结果将为不确定性下的离散和连续优化建立统一的理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simge Kucukyavuz其他文献
Simge Kucukyavuz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simge Kucukyavuz', 18)}}的其他基金
Collaborative Research: CIF: Small: Convexification-based Decomposition Methods for Large-Scale Inference in Graphical Models
合作研究:CIF:小型:图模型中大规模推理的基于凸化的分解方法
- 批准号:
2007814 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: 2018 Mixed Integer Programming Workshop Poster Session, Greenville, South Carolina, June 18-21, 2018
协作研究:2018 年混合整数编程研讨会海报会议,南卡罗来纳州格林维尔,2018 年 6 月 18 日至 21 日
- 批准号:
1841303 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
- 批准号:
1907463 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
- 批准号:
1733001 - 财政年份:2017
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAREER: Mixed-Integer Optimization under Joint Chance Constraints
职业:联合机会约束下的混合整数优化
- 批准号:
1732364 - 财政年份:2017
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Mixed-Integer Programming Approaches for Risk-Averse Multicriteria Optimization
用于规避风险的多标准优化的混合整数规划方法
- 批准号:
1537317 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAREER: Mixed-Integer Optimization under Joint Chance Constraints
职业:联合机会约束下的混合整数优化
- 批准号:
1055668 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Mixed-Integer Optimization for Multi-Item Multi-Echelon Production and Distribution Planning
多项目多梯次生产和配送计划的混合整数优化
- 批准号:
0824480 - 财政年份:2008
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Mixed-Integer Optimization for Multi-Item Multi-Echelon Production and Distribution Planning
多项目多梯次生产和配送计划的混合整数优化
- 批准号:
0917952 - 财政年份:2008
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似国自然基金
基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
- 批准号:82302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
- 批准号:
2246022 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Student Support for Mixed Integer Programming Workshop, Poster Session and Computational Competition, 2023 - 2025
混合整数编程研讨会、海报会议和计算竞赛的学生支持,2023 - 2025
- 批准号:
2326892 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
- 批准号:
532673-2019 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Postgraduate Scholarships - Doctoral
Theory, computations and applications of structured Mixed-Integer Programs
结构化混合整数程序的理论、计算和应用
- 批准号:
RGPIN-2020-04030 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual
2022 Mixed Integer Programming Workshop Poster Session and Computational Competition; New Brunswick, New Jersey; May 24-26, 2022
2022年混合整数规划研讨会海报会议及计算竞赛;
- 批准号:
2211222 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
- 批准号:
RGPIN-2021-02475 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual
Bilinear Mixed-Integer Programming: Theory and Applications
双线性混合整数规划:理论与应用
- 批准号:
532673-2019 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Postgraduate Scholarships - Doctoral
MAiNGO – McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization
MAiNGO – 基于 McCormick 的混合整数非线性全局优化算法
- 批准号:
442664501 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Research Grants
Analog Digital Mixed-Signal Integrated Circuit Architecture based on Integer Theory
基于整数理论的模拟数字混合信号集成电路结构
- 批准号:
21K04190 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




