Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
基本信息
- 批准号:RGPIN-2020-06826
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal describes a research agenda on non-local shape optimization problems, as they arise in potential theory, biological aggregation, and harmonic analysis. Each project involves at least one student or postdoc. In potential theory, non-local energy functionals result from integrating a singular interaction potential, such as the Newtonian repulsion, over pairs of charged particles. More complex pair interactions of attractive-repulsive type are used in biological models to describe how the collective behaviour of herds and swarms emerges from adding up interactions between individuals. I am interested in shape optimization problems for these energy functionals under suitable geometric constraints. The long-term objective is to characterize not just the optimal configurations but all critical points of the energy functionals, and understand how the energy landscape shapes the resulting classical or and quantum dynamics over long time scales. In harmonic analysis, convolution-type functionals are used to capture information about sum sets and incidence geometry. The general principle is that large values of these functionals are associated with frequent coincidences and small sumsets; they indicate that the densities appearing in the functional share some common additive structure. The long-term objective is to reliably detect the presence of such structure in a variety of situations, and characterize its implications. I am interested in sharp inequalities of isoperimetric type that can be used to quantify the distance of near-maximizers to intervals, convex sets, or Bohr sets in the continuum, and to arithmetic progressions in the discrete setting. These inequalities become more powerful with increasing dimension, giving rise to new concentration inequalities that are awaiting detailed study. I propose 8 problems in these areas. The first two, (P1) and (P2), are extremal Capacitor problems. (P3) concerns minimization of non-local interaction energies that decay at infinity, which is a toy model for biological aggregation. (P4) and (P5) concern rearrangement inequalities on non-Euclidean spaces, specifically Gauss space, spheres, and orthogonal groups. The next three problems (P6)-(P8) touch on related questions in additive combinatorics. Finally, I plan to continue a long-standing collaboration on problems in Computer Communication Networks.
该建议描述了关于非本地形状优化问题的研究议程,因为它们在潜在理论,生物聚集和谐波分析中产生。每个项目涉及至少一个学生或博士后。在潜在理论中,非本地能量函数是由于整合了成对的带电颗粒的奇异相互作用电位(例如牛顿排斥)而引起的。在生物学模型中使用了更复杂的对抑制类型的对相互作用,以描述牛群和群体的集体行为如何从增加个人之间的相互作用中出现。在适当的几何约束下,我对这些能量功能的形状优化问题感兴趣。长期目标不仅要表征最佳配置,还要表征能量功能的所有关键点,并了解能量景观如何在长期尺度上塑造所得的经典或量子动力学。在谐波分析中,卷积类型功能用于捕获有关和集合几何形状的信息。一般原则是,这些功能的巨大值与频繁的一致性和小总和有关。他们表明,功能中出现的密度共享一些常见的添加剂结构。长期目标是可靠地检测到各种情况下这种结构的存在,并表征其含义。我对等等类型的急剧不平等感兴趣,这些类型可用于量化连续体中近麦克西变量与间隔,凸集或BOHR集的距离,以及在离散设置中的算术进行。随着维度的增加,这些不平等变得更加强大,从而引起了等待详细研究的新集中不平等。我在这些领域提出了8个问题。前两个(P1)和(P2)是极端电容器问题。 (P3)涉及在Infinity衰减的非本地相互作用能量的最小化,这是生物聚集的玩具模型。 (P4)和(p5)涉及非欧盟人空间的重排不平等,特别是高斯空间,球体和正交组。接下来的三个问题(P6) - (P8)涉及添加剂组合学中的相关问题。最后,我计划继续在计算机通信网络中的问题上进行长期合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Burchard, Almut其他文献
A network calculus with effective bandwidth
- DOI:
10.1109/tnet.2007.896501 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:3.7
- 作者:
Li, Chengzhi;Burchard, Almut;Liebeherr, Jorg - 通讯作者:
Liebeherr, Jorg
Network-Layer Performance Analysis of Multihop Fading Channels
- DOI:
10.1109/tnet.2014.2360675 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:3.7
- 作者:
Al-Zubaidy, Hussein;Liebeherr, Joerg;Burchard, Almut - 通讯作者:
Burchard, Almut
Burchard, Almut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Burchard, Almut', 18)}}的其他基金
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
- 批准号:
311685-2010 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
- 批准号:
311685-2010 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
- 批准号:
311685-2010 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
体积泛函和Willmore泛函的几何变分问题
- 批准号:12271069
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
几何变分问题解的奇点集的研究
- 批准号:12271195
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
变分方法与辛几何理论在N体问题中的应用
- 批准号:12101394
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
变分方法与辛几何理论在N体问题中的应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黎曼几何中的若干分析与变分问题及相关应用
- 批准号:
- 批准年份:2020
- 资助金额:247 万元
- 项目类别:重点项目
相似海外基金
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2202343 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant