Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
基本信息
- 批准号:RGPIN-2020-06826
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal describes a research agenda on non-local shape optimization problems, as they arise in potential theory, biological aggregation, and harmonic analysis. Each project involves at least one student or postdoc. In potential theory, non-local energy functionals result from integrating a singular interaction potential, such as the Newtonian repulsion, over pairs of charged particles. More complex pair interactions of attractive-repulsive type are used in biological models to describe how the collective behaviour of herds and swarms emerges from adding up interactions between individuals. I am interested in shape optimization problems for these energy functionals under suitable geometric constraints. The long-term objective is to characterize not just the optimal configurations but all critical points of the energy functionals, and understand how the energy landscape shapes the resulting classical or and quantum dynamics over long time scales. In harmonic analysis, convolution-type functionals are used to capture information about sum sets and incidence geometry. The general principle is that large values of these functionals are associated with frequent coincidences and small sumsets; they indicate that the densities appearing in the functional share some common additive structure. The long-term objective is to reliably detect the presence of such structure in a variety of situations, and characterize its implications. I am interested in sharp inequalities of isoperimetric type that can be used to quantify the distance of near-maximizers to intervals, convex sets, or Bohr sets in the continuum, and to arithmetic progressions in the discrete setting. These inequalities become more powerful with increasing dimension, giving rise to new concentration inequalities that are awaiting detailed study. I propose 8 problems in these areas. The first two, (P1) and (P2), are extremal Capacitor problems. (P3) concerns minimization of non-local interaction energies that decay at infinity, which is a toy model for biological aggregation. (P4) and (P5) concern rearrangement inequalities on non-Euclidean spaces, specifically Gauss space, spheres, and orthogonal groups. The next three problems (P6)-(P8) touch on related questions in additive combinatorics. Finally, I plan to continue a long-standing collaboration on problems in Computer Communication Networks.
该提案描述了非局部形状优化问题的研究议程,因为它们出现在潜在的理论,生物聚集和谐波分析。每个项目至少涉及一名学生或博士后。在势理论中,非定域能量泛函来自于对带电粒子对的奇异相互作用势的积分,例如牛顿排斥。在生物模型中,吸引-排斥类型的更复杂的对相互作用被用来描述群体和群的集体行为是如何从个体之间的相互作用中产生的。我感兴趣的形状优化问题,这些能量泛函下适当的几何约束。长期目标是不仅要表征最佳配置,还要表征能量泛函的所有临界点,并了解能量景观如何在长时间尺度上塑造所产生的经典或量子动力学。在调和分析中,卷积型泛函用于捕获关于和集和关联几何的信息。一般的原则是,这些泛函的大值与频繁的重合和小的和集;它们表明,出现在泛函中的密度共享一些共同的加法结构。长期目标是在各种情况下可靠地检测这种结构的存在,并描述其影响。我感兴趣的是等周型的尖锐不等式,这些不等式可以用来量化近最大化者到连续统中的区间、凸集或玻尔集以及到离散设置中的算术级数的距离。这些不等式随着维数的增加而变得更加强大,引起了新的浓度不等式,有待详细研究。我在这些方面提出了8个问题。前两个,(P1)和(P2),是极值电容器问题。(P3)关注在无穷远处衰减的非局部相互作用能量的最小化,这是生物聚集的玩具模型。(P4)和(P5)涉及非欧几里德空间上的重排不等式,特别是高斯空间、球面和正交群。接下来的三个问题(P6)-(P8)涉及加法组合学中的相关问题。最后,我计划继续在计算机通信网络问题上的长期合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Burchard, Almut其他文献
A network calculus with effective bandwidth
- DOI:
10.1109/tnet.2007.896501 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:3.7
- 作者:
Li, Chengzhi;Burchard, Almut;Liebeherr, Jorg - 通讯作者:
Liebeherr, Jorg
Network-Layer Performance Analysis of Multihop Fading Channels
- DOI:
10.1109/tnet.2014.2360675 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:3.7
- 作者:
Al-Zubaidy, Hussein;Liebeherr, Joerg;Burchard, Almut - 通讯作者:
Burchard, Almut
Burchard, Almut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Burchard, Almut', 18)}}的其他基金
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
- 批准号:
311685-2010 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
- 批准号:
311685-2010 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
- 批准号:
311685-2010 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2202343 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
- 批准号:
2044954 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Regularity and Singularity Issues in Geometric Variational Problems
几何变分问题中的正则性和奇异性问题
- 批准号:
2055686 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Minimal Surfaces in Geometric Variational Problems
几何变分问题中的最小曲面
- 批准号:
2147521 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant