Cartan connections, geometry of homogeneous spaces, and dynamics
嘉当连接、齐次空间几何和动力学
基本信息
- 批准号:1057798
- 负责人:
- 金额:$ 1.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Workshop on Cartan Connections, Geometry of Homogeneous Spaces, and Dynamics" to be held at the Erwin Schroedinger Institute, July 11-22, 2011. The two-week workshop is devoted to two major themes, conformal geometry and its generalizations, and group actions on manifolds, and the discussion will be organized around techniques from Cartan geometries in these areas. Cartan geometries are a framework for study of a wide range of geometric structures, in which each such structure has an infinitesimal model that is a homogeneous space. The symmetry of this model leads to useful algebraic expressions for the geometric invariants of a given geometric manifold. A thorough understanding of existence and basic properties of Cartan geometries in most important contexts has recently been obtained, and the focus has shifted towards using the Cartan connection to study the geometries in question. Primary intellectual goals of the workshop are (1) to gather the diverse group of researchers currently working with Cartan geometries on a range of problems in geometry and analysis, and (2) introduce researchers working on the same problems to the techniques of Cartan geometries that have yielded valuable results.The themes of the workshop have important connections to physics, including general relativity and the AdS/CFT correspondence. The time period overlaps with a semester program on "Dynamics of General Relativity," and the organizers anticipate fruitful interaction among participants in the two events. A particular effort is being made to invite early-career researchers and mathematicians from underrepresented groups or working in developing countries.
“Cartan连接、均匀空间几何和动力学研讨会”将于2011年7月11日至22日在Erwin Schroedinger研究所举行。为期两周的研讨会致力于两个主要主题,保形几何及其推广,以及流形上的群作用,讨论将围绕这些领域的Cartan几何的技巧来组织。Cartan几何是研究范围广泛的几何结构的框架,其中每个这样的结构都有一个作为齐次空间的无穷小模型。这个模型的对称性导致了给定几何流形的几何不变量的有用的代数表达式。最近,人们对Cartan几何在最重要的背景下的存在和基本性质有了透彻的了解,并将重点转移到利用Cartan联系来研究所讨论的几何上。研讨会的主要学术目标是(1)聚集目前在一系列几何和分析问题上研究Cartan几何的不同研究人员,以及(2)向研究相同问题的研究人员介绍已产生有价值结果的Cartan几何技术。研讨会的主题与物理学有重要联系,包括广义相对论和ADS/CFT通信。这段时间与一个学期的“广义相对论动力学”课程重叠,组织者预计这两个活动的参与者之间将进行富有成效的互动。正在作出特别努力,邀请来自代表性不足群体或在发展中国家工作的早期职业研究人员和数学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karin Melnick其他文献
Actions of Noncompact Semisimple Groups on Lorentz Manifolds
- DOI:
10.1007/s00039-008-0659-6 - 发表时间:
2008-04-22 - 期刊:
- 影响因子:2.500
- 作者:
Mohamed Deffaf;Karin Melnick;Abdelghani Zeghib - 通讯作者:
Abdelghani Zeghib
Isometric Actions of Heisenberg Groups on Compact Lorentz Manifolds
- DOI:
10.1007/s10711-005-9015-2 - 发表时间:
2006-06-04 - 期刊:
- 影响因子:0.500
- 作者:
Karin Melnick - 通讯作者:
Karin Melnick
Karin Melnick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karin Melnick', 18)}}的其他基金
Transformation Groups in Conformal and Projective Geometry
共角几何和射影几何中的变换群
- 批准号:
2109347 - 财政年份:2021
- 资助金额:
$ 1.37万 - 项目类别:
Continuing Grant
CAREER: Frontiers of rigidity in pseudo-Riemannian, conformal, and parabolic geometries
职业生涯:伪黎曼几何、共角几何和抛物线几何中的刚性前沿
- 批准号:
1255462 - 财政年份:2013
- 资助金额:
$ 1.37万 - 项目类别:
Continuing Grant
Differential Geometric Aspects of Rigidity
刚度的微分几何方面
- 批准号:
1007136 - 财政年份:2010
- 资助金额:
$ 1.37万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 1.37万 - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 1.37万 - 项目类别:
Standard Grant
New connections between Fractal Geometry, Harmonic Analysis and Ergodic Theory
分形几何、调和分析和遍历理论之间的新联系
- 批准号:
RGPIN-2020-04245 - 财政年份:2022
- 资助金额:
$ 1.37万 - 项目类别:
Discovery Grants Program - Individual
On Problems in and Connections between Analysis, Geometry and Combinatorics
论分析、几何和组合学中的问题和联系
- 批准号:
2154232 - 财政年份:2022
- 资助金额:
$ 1.37万 - 项目类别:
Standard Grant
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
- 批准号:
22K18669 - 财政年份:2022
- 资助金额:
$ 1.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New connections between Fractal Geometry, Harmonic Analysis and Ergodic Theory
分形几何、调和分析和遍历理论之间的新联系
- 批准号:
RGPIN-2020-04245 - 财政年份:2021
- 资助金额:
$ 1.37万 - 项目类别:
Discovery Grants Program - Individual
New Connections between Arithmetic Geometry and Computation
算术几何与计算之间的新联系
- 批准号:
534834-2019 - 财政年份:2021
- 资助金额:
$ 1.37万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Connections Between Tropical Geometry, Arithmetic Geometry, and Combinatorics
职业:热带几何、算术几何和组合数学之间的联系
- 批准号:
2044564 - 财政年份:2021
- 资助金额:
$ 1.37万 - 项目类别:
Continuing Grant
New connections between Fractal Geometry, Harmonic Analysis and Ergodic Theory
分形几何、调和分析和遍历理论之间的新联系
- 批准号:
RGPIN-2020-04245 - 财政年份:2020
- 资助金额:
$ 1.37万 - 项目类别:
Discovery Grants Program - Individual
New Connections between Arithmetic Geometry and Computation
算术几何与计算之间的新联系
- 批准号:
534834-2019 - 财政年份:2020
- 资助金额:
$ 1.37万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral