On Problems in and Connections between Analysis, Geometry and Combinatorics
论分析、几何和组合学中的问题和联系
基本信息
- 批准号:2154232
- 负责人:
- 金额:$ 32.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project concerns the interactions among a variety of ideas in harmonic analysis, geometric measure, and combinatorics, with applications to data science, centered around the concept of finite point configurations. The basic question is, given a sufficiently large set of points (here ‘large’ is situation dependent), does it contain an equilateral triangle, a chain, or another configuration of a given type. The interplay of ideas from different areas of mathematics, sometimes motivated by specific questions in the study of large data, will be emphasized throughout. As was the case in the past, the resulting symbiosis will continue creating a live network of concepts that leads to the productive interplay among the techniques and ideas in the corresponding fields. The ideas generated in this line of research will be used to run summer research programs for undergraduate students. Graduate students and postdoctoral researchers will be involved in all aspects of this work. The key underlying theme is the Falconer distance conjecture which says that if a compact subset of Euclidean space has the Hausdorff dimension at least half the ambient dimension, then the Lebesgue measure of the distance set is positive. This work will be continued, aiming towards the ultimate conjecture using a combination of methods arising from decoupling and arithmetic considerations. Another goal is to establish a complete picture of the configuration question the principal investigator has previously studied with collaborators, in showing that a similar copy of configuration of sufficiently high, but not too high, a level of complexity can be found in a set of sufficiently large Hausdorff dimension in Euclidean space and Riemannian manifolds. The techniques that have been developed while studying these questions have proven extremely useful in the investigation of dimension reduction in data science. This avenue will be explored further.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目关注调和分析,几何测量和组合学中各种思想之间的相互作用,并以有限点配置的概念为中心应用于数据科学。基本的问题是,给定一个足够大的点集(这里的“大”取决于情况),它是否包含等边三角形,链或给定类型的另一种配置。来自不同数学领域的思想的相互作用,有时是由大数据研究中的特定问题所激发的,将在整个过程中得到强调。与过去的情况一样,由此产生的共生关系将继续创造一个活跃的概念网络,导致相应领域的技术和思想之间的富有成效的相互作用。在这条研究线产生的想法将用于运行本科生暑期研究计划。研究生和博士后研究人员将参与这项工作的各个方面。关键的基本主题是法尔科纳距离猜想,它说,如果一个紧凑的子集欧几里德空间的豪斯多夫维数至少一半的环境尺寸,然后勒贝格措施的距离集是积极的。这项工作将继续进行,目的是最终的猜想使用的方法产生的去耦和算术的考虑相结合。另一个目标是建立一个完整的图片的配置问题的主要研究者以前研究的合作者,在显示一个类似的副本配置足够高,但不是太高,一个复杂的水平可以发现在一组足够大的豪斯多夫维数在欧几里得空间和黎曼流形。在研究这些问题时开发的技术在数据科学中的降维研究中非常有用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Iosevich其他文献
The VC-Dimension and Point Configurations in $${\mathbb F}_q^2$$
- DOI:
10.1007/s00454-023-00570-5 - 发表时间:
2023-10-10 - 期刊:
- 影响因子:0.600
- 作者:
David Fitzpatrick;Alex Iosevich;Brian McDonald;Emmett Wyman - 通讯作者:
Emmett Wyman
Generalized point configurations in math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msubsupmrowmi mathvariant="double-struck"F/mi/mrowmrowmiq/mi/mrowmrowmid/mi/mrow/msubsup/math
数学中的广义点配置 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" 类="math" msubsup mrow mi mathvariant="double-struck"F/mi mrow mrow mi q/mi mrow mrow mid/mi mrow/msubsup/math
- DOI:
10.1016/j.ffa.2024.102472 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:1.200
- 作者:
Paige Bright;Xinyu Fang;Barrett Heritage;Alex Iosevich;Tingsong Jiang;Hans Parshall;Maxwell Sun - 通讯作者:
Maxwell Sun
Intersections of sets and Fourier analysis
- DOI:
10.1007/s11854-016-0004-1 - 发表时间:
2016-03-17 - 期刊:
- 影响因子:0.900
- 作者:
Suresh Eswarathasan;Alex Iosevich;Krystal Taylor - 通讯作者:
Krystal Taylor
Spherical means and the restriction phenomenon
- DOI:
10.1007/bf02514502 - 发表时间:
2001-07-01 - 期刊:
- 影响因子:1.200
- 作者:
Luca Brandolini;Alex Iosevich;Giancarlo Travaglini - 通讯作者:
Giancarlo Travaglini
Improved incidence bounds over arbitrary finite fields via the VC-dimension theory
通过 VC 维理论改进了任意有限域上的发生率界
- DOI:
10.1016/j.ejc.2024.103928 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:0.900
- 作者:
Alex Iosevich;Thang Pham;Steven Senger;Michael Tait - 通讯作者:
Michael Tait
Alex Iosevich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Iosevich', 18)}}的其他基金
International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
- 批准号:
2154480 - 财政年份:2022
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
Geometric configuration and Fourier analysis
几何配置和傅里叶分析
- 批准号:
1045404 - 财政年份:2010
- 资助金额:
$ 32.28万 - 项目类别:
Continuing Grant
Geometric configuration and Fourier analysis
几何配置和傅里叶分析
- 批准号:
0901553 - 财政年份:2009
- 资助金额:
$ 32.28万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: New Trends in Harmonic Analysis
FRG:协作研究:谐波分析的新趋势
- 批准号:
0456306 - 财政年份:2005
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
Gaussian Curvature, Geometric Combinatorics and the Fourier Transform
高斯曲率、几何组合和傅里叶变换
- 批准号:
0245369 - 财政年份:2003
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
The Role of Gaussian Curvature in Harmonic Analysis and Related Areas
高斯曲率在调和分析及相关领域中的作用
- 批准号:
0087339 - 财政年份:2000
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402572 - 财政年份:2024
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402571 - 财政年份:2024
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
- 批准号:
2332817 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
Connections between sound composition and visual art through the transformation of sound material into 3D objects and sonic spaces
通过将声音材料转换为 3D 对象和声音空间,声音创作与视觉艺术之间的联系
- 批准号:
2893455 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Studentship
Dissecting connections between diet, the microbiome and Alzheimers disease
剖析饮食、微生物组和阿尔茨海默病之间的联系
- 批准号:
10740056 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Tephra connections between environmental change and human prehistory in Ethiopia
埃塞俄比亚环境变化与人类史前史之间的火山灰联系
- 批准号:
2887807 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Studentship
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
- 批准号:
10744556 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Readdressing the Spectacle: Composing Connections Between Past Women and Living Women Composers Through Collage
重新审视景观:通过拼贴画过去的女性作曲家和在世的女性作曲家之间的联系
- 批准号:
2879077 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Studentship
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Standard Grant
CAREER: Probing the connections between mantle convection and oceanic gateways in the North Atlantic using deep-sea drilling
职业:利用深海钻探探索地幔对流与北大西洋海洋门户之间的联系
- 批准号:
2238290 - 财政年份:2023
- 资助金额:
$ 32.28万 - 项目类别:
Continuing Grant